mirror of
https://github.com/deepseek-ai/DeepSeek-V3
synced 2025-01-22 12:25:30 +00:00
Enhance documentation and update .gitignore for model conversion scripts
This commit is contained in:
parent
fd011c11aa
commit
a1296f099e
6
.gitignore
vendored
6
.gitignore
vendored
@ -165,4 +165,8 @@ cython_debug/
|
|||||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
#.idea/
|
#.idea/
|
||||||
|
|
||||||
|
.vscode/*
|
||||||
|
|
||||||
|
.DS_Store
|
@ -31,6 +31,18 @@ mapping = {
|
|||||||
|
|
||||||
|
|
||||||
def main(hf_ckpt_path, save_path, n_experts, mp):
|
def main(hf_ckpt_path, save_path, n_experts, mp):
|
||||||
|
"""
|
||||||
|
Converts and saves model checkpoint files into a specified format.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hf_ckpt_path (str): Path to the directory containing the input checkpoint files.
|
||||||
|
save_path (str): Path to the directory where the converted checkpoint files will be saved.
|
||||||
|
n_experts (int): Total number of experts in the model.
|
||||||
|
mp (int): Model parallelism factor.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
"""
|
||||||
torch.set_num_threads(8)
|
torch.set_num_threads(8)
|
||||||
n_local_experts = n_experts // mp
|
n_local_experts = n_experts // mp
|
||||||
state_dicts = [{} for _ in range(mp)]
|
state_dicts = [{} for _ in range(mp)]
|
||||||
|
@ -10,6 +10,25 @@ from safetensors.torch import load_file, save_file
|
|||||||
from kernel import weight_dequant
|
from kernel import weight_dequant
|
||||||
|
|
||||||
def main(fp8_path, bf16_path):
|
def main(fp8_path, bf16_path):
|
||||||
|
"""
|
||||||
|
Converts FP8 weights to BF16 and saves the converted weights.
|
||||||
|
|
||||||
|
This function reads FP8 weights from the specified directory, converts them to BF16,
|
||||||
|
and saves the converted weights to another specified directory. It also updates the
|
||||||
|
model index file to reflect the changes.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
fp8_path (str): The path to the directory containing the FP8 weights and model index file.
|
||||||
|
bf16_path (str): The path to the directory where the converted BF16 weights will be saved.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
KeyError: If a required scale_inv tensor is missing for a weight.
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
- The function assumes that the FP8 weights are stored in safetensor files.
|
||||||
|
- The function caches loaded safetensor files to optimize memory usage.
|
||||||
|
- The function updates the model index file to remove references to scale_inv tensors.
|
||||||
|
"""
|
||||||
torch.set_default_dtype(torch.bfloat16)
|
torch.set_default_dtype(torch.bfloat16)
|
||||||
os.makedirs(bf16_path, exist_ok=True)
|
os.makedirs(bf16_path, exist_ok=True)
|
||||||
model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
|
model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
|
||||||
@ -23,6 +42,18 @@ def main(fp8_path, bf16_path):
|
|||||||
|
|
||||||
# Helper function to get tensor from the correct file
|
# Helper function to get tensor from the correct file
|
||||||
def get_tensor(tensor_name):
|
def get_tensor(tensor_name):
|
||||||
|
"""
|
||||||
|
Retrieves a tensor from the cached safetensor files or loads it from disk if not cached.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tensor_name (str): The name of the tensor to retrieve.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: The retrieved tensor.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
KeyError: If the tensor does not exist in the safetensor file.
|
||||||
|
"""
|
||||||
file_name = weight_map[tensor_name]
|
file_name = weight_map[tensor_name]
|
||||||
if file_name not in loaded_files:
|
if file_name not in loaded_files:
|
||||||
file_path = os.path.join(fp8_path, file_name)
|
file_path = os.path.join(fp8_path, file_name)
|
||||||
|
@ -12,6 +12,16 @@ from model import Transformer, ModelArgs
|
|||||||
|
|
||||||
|
|
||||||
def sample(logits, temperature: float = 1.0):
|
def sample(logits, temperature: float = 1.0):
|
||||||
|
"""
|
||||||
|
Samples a token from the logits using temperature scaling.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
logits (torch.Tensor): The logits tensor for token predictions.
|
||||||
|
temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: The sampled token.
|
||||||
|
"""
|
||||||
logits = logits / max(temperature, 1e-5)
|
logits = logits / max(temperature, 1e-5)
|
||||||
probs = torch.softmax(logits, dim=-1)
|
probs = torch.softmax(logits, dim=-1)
|
||||||
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
|
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
|
||||||
@ -25,6 +35,19 @@ def generate(
|
|||||||
eos_id: int,
|
eos_id: int,
|
||||||
temperature: float = 1.0
|
temperature: float = 1.0
|
||||||
) -> List[List[int]]:
|
) -> List[List[int]]:
|
||||||
|
"""
|
||||||
|
Generates new tokens based on the given prompt tokens using the specified model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (Transformer): The transformer model used for token generation.
|
||||||
|
prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
|
||||||
|
max_new_tokens (int): The maximum number of new tokens to generate.
|
||||||
|
eos_id (int): The end-of-sequence token ID.
|
||||||
|
temperature (float, optional): The temperature value for sampling. Defaults to 1.0.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[List[int]]: A list of lists containing the generated tokens for each sequence.
|
||||||
|
"""
|
||||||
prompt_lens = [len(t) for t in prompt_tokens]
|
prompt_lens = [len(t) for t in prompt_tokens]
|
||||||
assert max(prompt_lens) <= model.max_seq_len
|
assert max(prompt_lens) <= model.max_seq_len
|
||||||
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
|
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
|
||||||
@ -63,6 +86,17 @@ def main(
|
|||||||
max_new_tokens: int = 100,
|
max_new_tokens: int = 100,
|
||||||
temperature: float = 1.0,
|
temperature: float = 1.0,
|
||||||
) -> None:
|
) -> None:
|
||||||
|
"""
|
||||||
|
Main function to load the model and perform interactive or batch text generation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ckpt_path (str): Path to the model checkpoint directory.
|
||||||
|
config (str): Path to the model configuration file.
|
||||||
|
input_file (str, optional): Path to a file containing input prompts. Defaults to "".
|
||||||
|
interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
|
||||||
|
max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
|
||||||
|
temperature (float, optional): Temperature for sampling. Defaults to 1.0.
|
||||||
|
"""
|
||||||
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
||||||
rank = int(os.getenv("RANK", "0"))
|
rank = int(os.getenv("RANK", "0"))
|
||||||
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
||||||
@ -125,6 +159,20 @@ def main(
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
"""
|
||||||
|
Command-line interface for distributed text generation.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
--ckpt-path (str): Path to the model checkpoint directory.
|
||||||
|
--config (str): Path to the model configuration file.
|
||||||
|
--input-file (str, optional): File containing prompts for batch processing.
|
||||||
|
--interactive (bool, optional): Enable interactive mode for generating text.
|
||||||
|
--max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
|
||||||
|
--temperature (float, optional): Temperature for sampling. Defaults to 0.2.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
AssertionError: If neither input-file nor interactive mode is specified.
|
||||||
|
"""
|
||||||
parser = ArgumentParser()
|
parser = ArgumentParser()
|
||||||
parser.add_argument("--ckpt-path", type=str, required=True)
|
parser.add_argument("--ckpt-path", type=str, required=True)
|
||||||
parser.add_argument("--config", type=str, required=True)
|
parser.add_argument("--config", type=str, required=True)
|
||||||
|
@ -8,6 +8,18 @@ from triton import Config
|
|||||||
|
|
||||||
@triton.jit
|
@triton.jit
|
||||||
def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
|
def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
|
||||||
|
"""
|
||||||
|
Quantizes the input tensor `x_ptr` and stores the result in `y_ptr` and the scaling factor in `s_ptr`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x_ptr (triton.Pointer): Pointer to the input tensor.
|
||||||
|
y_ptr (triton.Pointer): Pointer to the output tensor where quantized values will be stored.
|
||||||
|
s_ptr (triton.Pointer): Pointer to the output tensor where scaling factors will be stored.
|
||||||
|
BLOCK_SIZE (tl.constexpr): The size of the block to be processed by each program instance.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
"""
|
||||||
pid = tl.program_id(axis=0)
|
pid = tl.program_id(axis=0)
|
||||||
offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
||||||
x = tl.load(x_ptr + offs).to(tl.float32)
|
x = tl.load(x_ptr + offs).to(tl.float32)
|
||||||
@ -19,6 +31,18 @@ def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
|
|||||||
|
|
||||||
|
|
||||||
def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
|
def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Quantizes the input tensor `x` using block-wise quantization.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
|
||||||
|
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
|
||||||
|
- The quantized tensor with dtype `torch.float8_e4m3fn`.
|
||||||
|
- A tensor of scaling factors with dtype `torch.float32`.
|
||||||
|
"""
|
||||||
assert x.is_contiguous()
|
assert x.is_contiguous()
|
||||||
assert x.size(-1) % block_size == 0
|
assert x.size(-1) % block_size == 0
|
||||||
y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
|
y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
|
||||||
@ -30,6 +54,20 @@ def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, tor
|
|||||||
|
|
||||||
@triton.jit
|
@triton.jit
|
||||||
def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
|
def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
|
||||||
|
"""
|
||||||
|
Dequantizes weights using the provided scaling factors and stores the result.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x_ptr (tl.pointer): Pointer to the quantized weights.
|
||||||
|
s_ptr (tl.pointer): Pointer to the scaling factors.
|
||||||
|
y_ptr (tl.pointer): Pointer to the output buffer for dequantized weights.
|
||||||
|
M (int): Number of rows in the weight matrix.
|
||||||
|
N (int): Number of columns in the weight matrix.
|
||||||
|
BLOCK_SIZE (tl.constexpr): Size of the block for tiling.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
"""
|
||||||
pid_m = tl.program_id(axis=0)
|
pid_m = tl.program_id(axis=0)
|
||||||
pid_n = tl.program_id(axis=1)
|
pid_n = tl.program_id(axis=1)
|
||||||
n = tl.cdiv(N, BLOCK_SIZE)
|
n = tl.cdiv(N, BLOCK_SIZE)
|
||||||
@ -44,6 +82,20 @@ def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
|
|||||||
|
|
||||||
|
|
||||||
def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
|
def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Dequantizes the given weight tensor using the provided scale tensor.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): The quantized weight tensor of shape (M, N).
|
||||||
|
s (torch.Tensor): The scale tensor of shape (M, N).
|
||||||
|
block_size (int, optional): The block size to use for dequantization. Defaults to 128.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: The dequantized weight tensor of the same shape as `x`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
AssertionError: If `x` or `s` are not contiguous or if their dimensions are not 2.
|
||||||
|
"""
|
||||||
assert x.is_contiguous() and s.is_contiguous()
|
assert x.is_contiguous() and s.is_contiguous()
|
||||||
assert x.dim() == 2 and s.dim() == 2
|
assert x.dim() == 2 and s.dim() == 2
|
||||||
M, N = x.size()
|
M, N = x.size()
|
||||||
@ -66,6 +118,25 @@ def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
|
|||||||
BLOCK_SIZE_M: tl.constexpr,
|
BLOCK_SIZE_M: tl.constexpr,
|
||||||
BLOCK_SIZE_N: tl.constexpr,
|
BLOCK_SIZE_N: tl.constexpr,
|
||||||
BLOCK_SIZE_K: tl.constexpr):
|
BLOCK_SIZE_K: tl.constexpr):
|
||||||
|
"""
|
||||||
|
Performs a matrix multiplication operation on FP8 matrices with scaling factors.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
a_ptr (tl.tensor): Pointer to the first input matrix A.
|
||||||
|
b_ptr (tl.tensor): Pointer to the second input matrix B.
|
||||||
|
c_ptr (tl.tensor): Pointer to the output matrix C.
|
||||||
|
a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A.
|
||||||
|
b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B.
|
||||||
|
M (int): Number of rows in matrix A and C.
|
||||||
|
N (tl.constexpr): Number of columns in matrix B and C.
|
||||||
|
K (tl.constexpr): Number of columns in matrix A and rows in matrix B.
|
||||||
|
BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension.
|
||||||
|
BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension.
|
||||||
|
BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
"""
|
||||||
pid_m = tl.program_id(axis=0)
|
pid_m = tl.program_id(axis=0)
|
||||||
pid_n = tl.program_id(axis=1)
|
pid_n = tl.program_id(axis=1)
|
||||||
k = tl.cdiv(K, BLOCK_SIZE_K)
|
k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||||
@ -97,6 +168,18 @@ def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
|
|||||||
|
|
||||||
|
|
||||||
def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
|
def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
|
||||||
|
"""
|
||||||
|
Perform a matrix multiplication using FP8 precision.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
a (torch.Tensor): The first input matrix, must be contiguous.
|
||||||
|
a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
|
||||||
|
b (torch.Tensor): The second input matrix, must be contiguous.
|
||||||
|
b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: The result of the matrix multiplication.
|
||||||
|
"""
|
||||||
assert a.is_contiguous() and b.is_contiguous()
|
assert a.is_contiguous() and b.is_contiguous()
|
||||||
assert a_s.is_contiguous() and b_s.is_contiguous()
|
assert a_s.is_contiguous() and b_s.is_contiguous()
|
||||||
K = a.size(-1)
|
K = a.size(-1)
|
||||||
|
Loading…
Reference in New Issue
Block a user