DeepSeek-Prover-V1.5/datasets/proofnet.jsonl
2024-08-16 11:33:21 +08:00

372 lines
240 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{"name": "exercise_1_13a", "split": "valid", "informal_prefix": "/-- Suppose that $f$ is holomorphic in an open set $\\Omega$. Prove that if $\\text{Re}(f)$ is constant, then $f$ is constant.-/\n", "formal_statement": "theorem exercise_1_13a {f : } (Ω : Set ) (a b : Ω) (h : IsOpen Ω)\n (hf : DifferentiableOn f Ω) (hc : ∃ (c : ), ∀ z ∈ Ω, (f z).re = c) :\n f a = f b :=", "goal": "f : \nΩ : Set \na b : ↑Ω\nh : IsOpen Ω\nhf : DifferentiableOn f Ω\nhc : ∃ c, ∀ z ∈ Ω, (f z).re = c\n⊢ f ↑a = f ↑b", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_1_13b", "split": "test", "informal_prefix": "/-- Suppose that $f$ is holomorphic in an open set $\\Omega$. Prove that if $\\text{Im}(f)$ is constant, then $f$ is constant.-/\n", "formal_statement": "theorem exercise_1_13b {f : } (Ω : Set ) (a b : Ω) (h : IsOpen Ω)\n (hf : DifferentiableOn f Ω) (hc : ∃ (c : ), ∀ z ∈ Ω, (f z).im = c) :\n f a = f b :=", "goal": "f : \nΩ : Set \na b : ↑Ω\nh : IsOpen Ω\nhf : DifferentiableOn f Ω\nhc : ∃ c, ∀ z ∈ Ω, (f z).im = c\n⊢ f ↑a = f ↑b", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_1_13c", "split": "valid", "informal_prefix": "/-- Suppose that $f$ is holomorphic in an open set $\\Omega$. Prove that if $|f|$ is constant, then $f$ is constant.-/\n", "formal_statement": "theorem exercise_1_13c {f : } (Ω : Set ) (a b : Ω) (h : IsOpen Ω)\n (hf : DifferentiableOn f Ω) (hc : ∃ (c : ), ∀ z ∈ Ω, abs (f z) = c) :\n f a = f b :=", "goal": "f : \nΩ : Set \na b : ↑Ω\nh : IsOpen Ω\nhf : DifferentiableOn f Ω\nhc : ∃ c, ∀ z ∈ Ω, Complex.abs (f z) = c\n⊢ f ↑a = f ↑b", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_1_19a", "split": "test", "informal_prefix": "/-- Prove that the power series $\\sum nz^n$ does not converge on any point of the unit circle.-/\n", "formal_statement": "theorem exercise_1_19a (z : ) (hz : abs z = 1) (s : )\n (h : s = (λ n => ∑ i in (range n), i * z ^ i)) :\n ¬ ∃ y, Tendsto s atTop (𝓝 y) :=", "goal": "z : \nhz : Complex.abs z = 1\ns : \nh : s = fun n => ∑ i ∈ range n, ↑i * z ^ i\n⊢ ¬∃ y, Tendsto s atTop (𝓝 y)", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_1_19b", "split": "valid", "informal_prefix": "/-- Prove that the power series $\\sum zn/n^2$ converges at every point of the unit circle.-/\n", "formal_statement": "theorem exercise_1_19b (z : ) (hz : abs z = 1) (s : )\n (h : s = (λ n => ∑ i in (range n), i * z / i ^ 2)) :\n ∃ y, Tendsto s atTop (𝓝 y) :=", "goal": "z : \nhz : Complex.abs z = 1\ns : \nh : s = fun n => ∑ i ∈ range n, ↑i * z / ↑i ^ 2\n⊢ ∃ y, Tendsto s atTop (𝓝 y)", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_1_19c", "split": "test", "informal_prefix": "/-- Prove that the power series $\\sum zn/n$ converges at every point of the unit circle except $z = 1$.-/\n", "formal_statement": "theorem exercise_1_19c (z : ) (hz : abs z = 1) (hz2 : z ≠ 1) (s : )\n (h : s = (λ n => ∑ i in (range n), i * z / i)) :\n ∃ z, Tendsto s atTop (𝓝 z) :=", "goal": "z : \nhz : Complex.abs z = 1\nhz2 : z ≠ 1\ns : \nh : s = fun n => ∑ i ∈ range n, ↑i * z / ↑i\n⊢ ∃ z, Tendsto s atTop (𝓝 z)", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_1_26", "split": "valid", "informal_prefix": "/-- Suppose $f$ is continuous in a region $\\Omega$. Prove that any two primitives of $f$ (if they exist) differ by a constant.-/\n", "formal_statement": "theorem exercise_1_26\n (f F₁ F₂ : ) (Ω : Set ) (h1 : IsOpen Ω) (h2 : IsConnected Ω)\n (hF₁ : DifferentiableOn F₁ Ω) (hF₂ : DifferentiableOn F₂ Ω)\n (hdF₁ : ∀ x ∈ Ω, deriv F₁ x = f x) (hdF₂ : ∀ x ∈ Ω, deriv F₂ x = f x)\n : ∃ c : , ∀ x, F₁ x = F₂ x + c :=", "goal": "f F₁ F₂ : \nΩ : Set \nh1 : IsOpen Ω\nh2 : IsConnected Ω\nhF₁ : DifferentiableOn F₁ Ω\nhF₂ : DifferentiableOn F₂ Ω\nhdF₁ : ∀ x ∈ Ω, deriv F₁ x = f x\nhdF₂ : ∀ x ∈ Ω, deriv F₂ x = f x\n⊢ ∃ c, ∀ (x : ), F₁ x = F₂ x + c", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_2_2", "split": "test", "informal_prefix": "/-- Show that $\\int_{0}^{\\infty} \\frac{\\sin x}{x} d x=\\frac{\\pi}{2}$.-/\n", "formal_statement": "theorem exercise_2_2 :\n Tendsto (λ y => ∫ x in (0 : )..y, Real.sin x / x) atTop (𝓝 (Real.pi / 2)) :=", "goal": "⊢ Tendsto (fun y => ∫ (x : ) in 0 ..y, x.sin / x) atTop (𝓝 (Real.pi / 2))", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_2_9", "split": "valid", "informal_prefix": "/-- Let $\\Omega$ be a bounded open subset of $\\mathbb{C}$, and $\\varphi: \\Omega \\rightarrow \\Omega$ a holomorphic function. Prove that if there exists a point $z_{0} \\in \\Omega$ such that $\\varphi\\left(z_{0}\\right)=z_{0} \\quad \\text { and } \\quad \\varphi^{\\prime}\\left(z_{0}\\right)=1$ then $\\varphi$ is linear.-/\n", "formal_statement": "theorem exercise_2_9\n {f : } (Ω : Set ) (b : Bornology.IsBounded Ω) (h : IsOpen Ω)\n (hf : DifferentiableOn f Ω) (z : Ω) (hz : f z = z) (h'z : deriv f z = 1) :\n ∃ (f_lin : →L[] ), ∀ x ∈ Ω, f x = f_lin x :=", "goal": "f : \nΩ : Set \nb : Bornology.IsBounded Ω\nh : IsOpen Ω\nhf : DifferentiableOn f Ω\nz : ↑Ω\nhz : f ↑z = ↑z\nh'z : deriv f ↑z = 1\n⊢ ∃ f_lin, ∀ x ∈ Ω, f x = f_lin x", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_2_13", "split": "test", "informal_prefix": "/-- Suppose $f$ is an analytic function defined everywhere in $\\mathbb{C}$ and such that for each $z_0 \\in \\mathbb{C}$ at least one coefficient in the expansion $f(z) = \\sum_{n=0}^\\infty c_n(z - z_0)^n$ is equal to 0. Prove that $f$ is a polynomial.-/\n", "formal_statement": "theorem exercise_2_13 {f : }\n (hf : ∀ z₀ : , ∃ (s : Set ) (c : ), IsOpen s ∧ z₀ ∈ s ∧\n ∀ z ∈ s, Tendsto (λ n => ∑ i in range n, (c i) * (z - z₀)^i) atTop (𝓝 (f z₀))\n ∧ ∃ i, c i = 0) :\n ∃ (c : ) (n : ), f = λ z => ∑ i in range n, (c i) * z ^ n :=", "goal": "f : \nhf :\n ∀ (z₀ : ),\n ∃ s c,\n IsOpen s ∧ z₀ ∈ s ∧ ∀ z ∈ s, Tendsto (fun n => ∑ i ∈ range n, c i * (z - z₀) ^ i) atTop (𝓝 (f z₀)) ∧ ∃ i, c i = 0\n⊢ ∃ c n, f = fun z => ∑ i ∈ range n, c i * z ^ n", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_3_3", "split": "valid", "informal_prefix": "/-- Show that $ \\int_{-\\infty}^{\\infty} \\frac{\\cos x}{x^2 + a^2} dx = \\pi \\frac{e^{-a}}{a}$ for $a > 0$.-/\n", "formal_statement": "theorem exercise_3_3 (a : ) (ha : 0 < a) :\n Tendsto (λ y => ∫ x in -y..y, Real.cos x / (x ^ 2 + a ^ 2))\n atTop (𝓝 (Real.pi * (Real.exp (-a) / a))) :=", "goal": "a : \nha : 0 < a\n⊢ Tendsto (fun y => ∫ (x : ) in -y..y, x.cos / (x ^ 2 + a ^ 2)) atTop (𝓝 (Real.pi * ((-a).exp / a)))", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_3_4", "split": "test", "informal_prefix": "/-- Show that $ \\int_{-\\infty}^{\\infty} \\frac{x \\sin x}{x^2 + a^2} dx = \\pi e^{-a}$ for $a > 0$.-/\n", "formal_statement": "theorem exercise_3_4 (a : ) (ha : 0 < a) :\n Tendsto (λ y => ∫ x in -y..y, x * Real.sin x / (x ^ 2 + a ^ 2))\n atTop (𝓝 (Real.pi * (Real.exp (-a)))) :=", "goal": "a : \nha : 0 < a\n⊢ Tendsto (fun y => ∫ (x : ) in -y..y, x * x.sin / (x ^ 2 + a ^ 2)) atTop (𝓝 (Real.pi * (-a).exp))", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_3_9", "split": "valid", "informal_prefix": "/-- Show that $\\int_0^1 \\log(\\sin \\pi x) dx = - \\log 2$.-/\n", "formal_statement": "theorem exercise_3_9 : ∫ x in (0 : )..(1 : ),\n Real.log (Real.sin (Real.pi * x)) = - Real.log 2 :=", "goal": "⊢ ∫ (x : ) in 0 ..1, (Real.pi * x).sin.log = -Real.log 2", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_3_14", "split": "test", "informal_prefix": "/-- Prove that all entire functions that are also injective take the form $f(z) = az + b$, $a, b \\in \\mathbb{C}$ and $a \\neq 0$.-/\n", "formal_statement": "theorem exercise_3_14 {f : } (hf : Differentiable f)\n (hf_inj : Function.Injective f) :\n ∃ (a b : ), f = (λ z => a * z + b) ∧ a ≠ 0 :=", "goal": "f : \nhf : Differentiable f\nhf_inj : Injective f\n⊢ ∃ a b, (f = fun z => a * z + b) ∧ a ≠ 0", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_3_22", "split": "valid", "informal_prefix": "/-- Show that there is no holomorphic function $f$ in the unit disc $D$ that extends continuously to $\\partial D$ such that $f(z) = 1/z$ for $z \\in \\partial D$.-/\n", "formal_statement": "theorem exercise_3_22 (D : Set ) (hD : D = ball 0 1) (f : )\n (hf : DifferentiableOn f D) (hfc : ContinuousOn f (closure D)) :\n ¬ ∀ z ∈ (sphere (0 : ) 1), f z = 1 / z :=", "goal": "D : Set \nhD : D = ball 0 1\nf : \nhf : DifferentiableOn f D\nhfc : ContinuousOn f (closure D)\n⊢ ¬∀ z ∈ sphere 0 1, f z = 1 / z", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_5_1", "split": "test", "informal_prefix": "/-- Prove that if $f$ is holomorphic in the unit disc, bounded and not identically zero, and $z_{1}, z_{2}, \\ldots, z_{n}, \\ldots$ are its zeros $\\left(\\left|z_{k}\\right|<1\\right)$, then $\\sum_{n}\\left(1-\\left|z_{n}\\right|\\right)<\\infty$.-/\n", "formal_statement": "theorem exercise_5_1 (f : ) (hf : DifferentiableOn f (ball 0 1))\n (hb : Bornology.IsBounded (Set.range f)) (h0 : f ≠ 0) (zeros : ) (hz : ∀ n, f (zeros n) = 0)\n (hzz : Set.range zeros = {z | f z = 0 ∧ z ∈ (ball (0 : ) 1)}) :\n ∃ (z : ), Tendsto (λ n => (∑ i in range n, (1 - zeros i))) atTop (𝓝 z) :=", "goal": "f : \nhf : DifferentiableOn f (ball 0 1)\nhb : Bornology.IsBounded (Set.range f)\nh0 : f ≠ 0\nzeros : \nhz : ∀ (n : ), f (zeros n) = 0\nhzz : Set.range zeros = {z | f z = 0 ∧ z ∈ ball 0 1}\n⊢ ∃ z, Tendsto (fun n => ∑ i ∈ range n, (1 - zeros i)) atTop (𝓝 z)", "header": "import Mathlib\n\nopen Complex Filter Function Metric Finset\nopen scoped BigOperators Topology\n\n"}
{"name": "exercise_1_1a", "split": "valid", "informal_prefix": "/-- If $r$ is rational $(r \\neq 0)$ and $x$ is irrational, prove that $r+x$ is irrational.-/\n", "formal_statement": "theorem exercise_1_1a\n (x : ) (y : ) :\n ( Irrational x ) -> Irrational ( x + y ) :=", "goal": "x : \ny : \n⊢ Irrational x → Irrational (x + ↑y)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1b", "split": "test", "informal_prefix": "/-- If $r$ is rational $(r \\neq 0)$ and $x$ is irrational, prove that $rx$ is irrational.-/\n", "formal_statement": "theorem exercise_1_1b\n(x : )\n(y : )\n(h : y ≠ 0)\n: ( Irrational x ) -> Irrational ( x * y ) :=", "goal": "x : \ny : \nh : y ≠ 0\n⊢ Irrational x → Irrational (x * ↑y)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_2", "split": "valid", "informal_prefix": "/-- Prove that there is no rational number whose square is $12$.-/\n", "formal_statement": "theorem exercise_1_2 : ¬ ∃ (x : ), ( x ^ 2 = 12 ) :=", "goal": "⊢ ¬∃ x, x ^ 2 = 12", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_4", "split": "test", "informal_prefix": "/-- Let $E$ be a nonempty subset of an ordered set; suppose $\\alpha$ is a lower bound of $E$ and $\\beta$ is an upper bound of $E$. Prove that $\\alpha \\leq \\beta$.-/\n", "formal_statement": "theorem exercise_1_4\n(α : Type*) [PartialOrder α]\n(s : Set α)\n(x y : α)\n(h₀ : Set.Nonempty s)\n(h₁ : x ∈ lowerBounds s)\n(h₂ : y ∈ upperBounds s)\n: x ≤ y :=", "goal": "α : Type u_1\ninst✝ : PartialOrder α\ns : Set α\nx y : α\nh₀ : s.Nonempty\nh₁ : x ∈ lowerBounds s\nh₂ : y ∈ upperBounds s\n⊢ x ≤ y", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_5", "split": "valid", "informal_prefix": "/-- Let $A$ be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \\in A$. Prove that $\\inf A=-\\sup (-A)$.-/\n", "formal_statement": "theorem exercise_1_5 (A minus_A : Set ) (hA : A.Nonempty)\n (hA_bdd_below : BddBelow A) (hminus_A : minus_A = {x | -x ∈ A}) :\n Inf A = Sup minus_A :=", "goal": "A minus_A : Set \nhA : A.Nonempty\nhA_bdd_below : BddBelow A\nhminus_A : minus_A = {x | -x ∈ A}\n⊢ Inf ↑A = Sup ↑minus_A", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_8", "split": "test", "informal_prefix": "/-- Prove that no order can be defined in the complex field that turns it into an ordered field.-/\n", "formal_statement": "theorem exercise_1_8 : ¬ ∃ (r : → Prop), IsLinearOrder r :=", "goal": "⊢ ¬∃ r, IsLinearOrder r", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_11a", "split": "valid", "informal_prefix": "/-- If $z$ is a complex number, prove that there exists an $r\\geq 0$ and a complex number $w$ with $| w | = 1$ such that $z = rw$.-/\n", "formal_statement": "theorem exercise_1_11a (z : ) :\n ∃ (r : ) (w : ), abs w = 1 ∧ z = r * w :=", "goal": "z : \n⊢ ∃ r w, Complex.abs w = 1 ∧ z = ↑r * w", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_12", "split": "test", "informal_prefix": "/-- If $z_1, \\ldots, z_n$ are complex, prove that $|z_1 + z_2 + \\ldots + z_n| \\leq |z_1| + |z_2| + \\cdots + |z_n|$.-/\n", "formal_statement": "theorem exercise_1_12 (n : ) (f : ) :\n abs (∑ i in range n, f i) ≤ ∑ i in range n, abs (f i) :=", "goal": "n : \nf : \n⊢ Complex.abs (∑ i ∈ range n, f i) ≤ ∑ i ∈ range n, Complex.abs (f i)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_13", "split": "valid", "informal_prefix": "/-- If $x, y$ are complex, prove that $||x|-|y|| \\leq |x-y|$.-/\n", "formal_statement": "theorem exercise_1_13 (x y : ) :\n |(abs x) - (abs y)| ≤ abs (x - y) :=", "goal": "x y : \n⊢ |Complex.abs x - Complex.abs y| ≤ Complex.abs (x - y)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_14", "split": "test", "informal_prefix": "/-- If $z$ is a complex number such that $|z|=1$, that is, such that $z \\bar{z}=1$, compute $|1+z|^{2}+|1-z|^{2}$.-/\n", "formal_statement": "theorem exercise_1_14\n (z : ) (h : abs z = 1)\n : (abs (1 + z)) ^ 2 + (abs (1 - z)) ^ 2 = 4 :=", "goal": "z : \nh : Complex.abs z = 1\n⊢ Complex.abs (1 + z) ^ 2 + Complex.abs (1 - z) ^ 2 = 4", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_16a", "split": "valid", "informal_prefix": "/-- Suppose $k \\geq 3, x, y \\in \\mathbb{R}^k, |x - y| = d > 0$, and $r > 0$. Prove that if $2r > d$, there are infinitely many $z \\in \\mathbb{R}^k$ such that $|z-x|=|z-y|=r$.-/\n", "formal_statement": "theorem exercise_1_16a\n (n : )\n (d r : )\n (x y z : EuclideanSpace (Fin n)) -- R^n\n (h₁ : n ≥ 3)\n (h₂ : ‖x - y‖ = d)\n (h₃ : d > 0)\n (h₄ : r > 0)\n (h₅ : 2 * r > d)\n : Set.Infinite {z : EuclideanSpace (Fin n) | ‖z - x‖ = r ∧ ‖z - y‖ = r} :=", "goal": "n : \nd r : \nx y z : EuclideanSpace (Fin n)\nh₁ : n ≥ 3\nh₂ : ‖x - y‖ = d\nh₃ : d > 0\nh₄ : r > 0\nh₅ : 2 * r > d\n⊢ {z | ‖z - x‖ = r ∧ ‖z - y‖ = r}.Infinite", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_17", "split": "test", "informal_prefix": "/-- Prove that $|\\mathbf{x}+\\mathbf{y}|^{2}+|\\mathbf{x}-\\mathbf{y}|^{2}=2|\\mathbf{x}|^{2}+2|\\mathbf{y}|^{2}$ if $\\mathbf{x} \\in R^{k}$ and $\\mathbf{y} \\in R^{k}$.-/\n", "formal_statement": "theorem exercise_1_17\n (n : )\n (x y : EuclideanSpace (Fin n)) -- R^n\n : ‖x + y‖^2 + ‖x - y‖^2 = 2*‖x‖^2 + 2*‖y‖^2 :=", "goal": "n : \nx y : EuclideanSpace (Fin n)\n⊢ ‖x + y‖ ^ 2 + ‖x - y‖ ^ 2 = 2 * ‖x‖ ^ 2 + 2 * ‖y‖ ^ 2", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_18a", "split": "valid", "informal_prefix": "/-- If $k \\geq 2$ and $\\mathbf{x} \\in R^{k}$, prove that there exists $\\mathbf{y} \\in R^{k}$ such that $\\mathbf{y} \\neq 0$ but $\\mathbf{x} \\cdot \\mathbf{y}=0$-/\n", "formal_statement": "theorem exercise_1_18a\n (n : )\n (h : n > 1)\n (x : EuclideanSpace (Fin n)) -- R^n\n : ∃ (y : EuclideanSpace (Fin n)), y ≠ 0 ∧ (inner x y) = (0 : ) :=", "goal": "n : \nh : n > 1\nx : EuclideanSpace (Fin n)\n⊢ ∃ y, y ≠ 0 ∧ ⟪x, y⟫_ = 0", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_18b", "split": "test", "informal_prefix": "/-- If $k = 1$ and $\\mathbf{x} \\in R^{k}$, prove that there does not exist $\\mathbf{y} \\in R^{k}$ such that $\\mathbf{y} \\neq 0$ but $\\mathbf{x} \\cdot \\mathbf{y}=0$-/\n", "formal_statement": "theorem exercise_1_18b\n : ¬ ∀ (x : ), ∃ (y : ), y ≠ 0 ∧ x * y = 0 :=", "goal": "⊢ ¬∀ (x : ), ∃ y, y ≠ 0 ∧ x * y = 0", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_19", "split": "valid", "informal_prefix": "/-- Suppose $a, b \\in R^k$. Find $c \\in R^k$ and $r > 0$ such that $|x-a|=2|x-b|$ if and only if $| x - c | = r$. Prove that $3c = 4b - a$ and $3r = 2 |b - a|$.-/\n", "formal_statement": "theorem exercise_1_19\n (n : )\n (a b c x : EuclideanSpace (Fin n))\n (r : )\n (h₁ : r > 0)\n (h₂ : 3 • c = 4 • b - a)\n (h₃ : 3 * r = 2 * ‖x - b‖)\n : ‖x - a‖ = 2 * ‖x - b‖ ↔ ‖x - c‖ = r :=", "goal": "n : \na b c x : EuclideanSpace (Fin n)\nr : \nh₁ : r > 0\nh₂ : 3 • c = 4 • b - a\nh₃ : 3 * r = 2 * ‖x - b‖\n⊢ ‖x - a‖ = 2 * ‖x - b‖ ↔ ‖x - c‖ = r", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_19a", "split": "test", "informal_prefix": "/-- If $A$ and $B$ are disjoint closed sets in some metric space $X$, prove that they are separated.-/\n", "formal_statement": "theorem exercise_2_19a {X : Type*} [MetricSpace X]\n (A B : Set X) (hA : IsClosed A) (hB : IsClosed B) (hAB : Disjoint A B) :\n SeparatedNhds A B :=", "goal": "X : Type u_1\ninst✝ : MetricSpace X\nA B : Set X\nhA : IsClosed A\nhB : IsClosed B\nhAB : Disjoint A B\n⊢ SeparatedNhds A B", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_24", "split": "valid", "informal_prefix": "/-- Let $X$ be a metric space in which every infinite subset has a limit point. Prove that $X$ is separable.-/\n", "formal_statement": "theorem exercise_2_24 {X : Type*} [MetricSpace X]\n (hX : ∀ (A : Set X), Infinite A → ∃ (x : X), x ∈ closure A) :\n SeparableSpace X :=", "goal": "X : Type u_1\ninst✝ : MetricSpace X\nhX : ∀ (A : Set X), Infinite ↑A → ∃ x, x ∈ closure A\n⊢ SeparableSpace X", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_25", "split": "test", "informal_prefix": "/-- Prove that every compact metric space $K$ has a countable base.-/\n", "formal_statement": "theorem exercise_2_25 {K : Type*} [MetricSpace K] [CompactSpace K] :\n ∃ (B : Set (Set K)), Set.Countable B ∧ IsTopologicalBasis B :=", "goal": "K : Type u_1\ninst✝¹ : MetricSpace K\ninst✝ : CompactSpace K\n⊢ ∃ B, B.Countable ∧ IsTopologicalBasis B", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_27a", "split": "valid", "informal_prefix": "/-- Suppose $E\\subset\\mathbb{R}^k$ is uncountable, and let $P$ be the set of condensation points of $E$. Prove that $P$ is perfect.-/\n", "formal_statement": "theorem exercise_2_27a (k : ) (E P : Set (EuclideanSpace (Fin k)))\n (hE : E.Nonempty ∧ ¬ Set.Countable E)\n (hP : P = {x | ∀ U ∈ 𝓝 x, ¬ Set.Countable (P ∩ E)}) :\n IsClosed P ∧ P = {x | ClusterPt x (𝓟 P)} :=", "goal": "k : \nE P : Set (EuclideanSpace (Fin k))\nhE : E.Nonempty ∧ ¬E.Countable\nhP : P = {x | ∀ U ∈ 𝓝 x, ¬(P ∩ E).Countable}\n⊢ IsClosed P ∧ P = {x | ClusterPt x (𝓟 P)}", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_27b", "split": "test", "informal_prefix": "/-- Suppose $E\\subset\\mathbb{R}^k$ is uncountable, and let $P$ be the set of condensation points of $E$. Prove that at most countably many points of $E$ are not in $P$.-/\n", "formal_statement": "theorem exercise_2_27b (k : ) (E P : Set (EuclideanSpace (Fin k)))\n (hE : E.Nonempty ∧ ¬ Set.Countable E)\n (hP : P = {x | ∀ U ∈ 𝓝 x, (P ∩ E).Nonempty ∧ ¬ Set.Countable (P ∩ E)}) :\n Set.Countable (E \\ P) :=", "goal": "k : \nE P : Set (EuclideanSpace (Fin k))\nhE : E.Nonempty ∧ ¬E.Countable\nhP : P = {x | ∀ U ∈ 𝓝 x, (P ∩ E).Nonempty ∧ ¬(P ∩ E).Countable}\n⊢ (E \\ P).Countable", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_28", "split": "valid", "informal_prefix": "/-- Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable.-/\n", "formal_statement": "theorem exercise_2_28 (X : Type*) [MetricSpace X] [SeparableSpace X]\n (A : Set X) (hA : IsClosed A) :\n ∃ P₁ P₂ : Set X, A = P₁ P₂ ∧\n IsClosed P₁ ∧ P₁ = {x | ClusterPt x (𝓟 P₁)} ∧\n Set.Countable P₂ :=", "goal": "X : Type u_1\ninst✝¹ : MetricSpace X\ninst✝ : SeparableSpace X\nA : Set X\nhA : IsClosed A\n⊢ ∃ P₁ P₂, A = P₁ P₂ ∧ IsClosed P₁ ∧ P₁ = {x | ClusterPt x (𝓟 P₁)} ∧ P₂.Countable", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_29", "split": "test", "informal_prefix": "/-- Prove that every open set in $\\mathbb{R}$ is the union of an at most countable collection of disjoint segments.-/\n", "formal_statement": "theorem exercise_2_29 (U : Set ) (hU : IsOpen U) :\n ∃ (f : → Set ), (∀ n, ∃ a b : , f n = {x | a < x ∧ x < b}) ∧ (∀ n, f n ⊆ U) ∧\n (∀ n m, n ≠ m → f n ∩ f m = ∅) ∧\n U = n, f n :=", "goal": "U : Set \nhU : IsOpen U\n⊢ ∃ f,\n (∀ (n : ), ∃ a b, f n = {x | a < x ∧ x < b}) ∧\n (∀ (n : ), f n ⊆ U) ∧ (∀ (n m : ), n ≠ m → f n ∩ f m = ∅) ∧ U = n, f n", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_1a", "split": "valid", "informal_prefix": "/-- Prove that convergence of $\\left\\{s_{n}\\right\\}$ implies convergence of $\\left\\{\\left|s_{n}\\right|\\right\\}$.-/\n", "formal_statement": "theorem exercise_3_1a\n (f : )\n (h : ∃ (a : ), Tendsto (λ (n : ) => f n) atTop (𝓝 a))\n : ∃ (a : ), Tendsto (λ (n : ) => |f n|) atTop (𝓝 a) :=", "goal": "f : \nh : ∃ a, Tendsto (fun n => f n) atTop (𝓝 a)\n⊢ ∃ a, Tendsto (fun n => |f n|) atTop (𝓝 a)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2a", "split": "test", "informal_prefix": "/-- Prove that $\\lim_{n \\rightarrow \\infty}\\sqrt{n^2 + n} -n = 1/2$.-/\n", "formal_statement": "theorem exercise_3_2a\n : Tendsto (λ (n : ) => (sqrt (n^2 + n) - n)) atTop (𝓝 (1/2)) :=", "goal": "⊢ Tendsto (fun n => √(n ^ 2 + n) - n) atTop (𝓝 (1 / 2))", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_3", "split": "valid", "informal_prefix": "/-- If $s_{1}=\\sqrt{2}$, and $s_{n+1}=\\sqrt{2+\\sqrt{s_{n}}} \\quad(n=1,2,3, \\ldots),$ prove that $\\left\\{s_{n}\\right\\}$ converges, and that $s_{n}<2$ for $n=1,2,3, \\ldots$.-/\n", "formal_statement": "theorem exercise_3_3\n : ∃ (x : ), Tendsto f atTop (𝓝 x) ∧ ∀ n, f n < 2 :=", "goal": "⊢ ∃ x, Tendsto f atTop (𝓝 x) ∧ ∀ (n : ), f n < 2", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\nnoncomputable def f : \n| 0 => sqrt 2\n| (n + 1) => sqrt (2 + sqrt (f n))\n\n"}
{"name": "exercise_3_5", "split": "test", "informal_prefix": "/-- For any two real sequences $\\left\\{a_{n}\\right\\},\\left\\{b_{n}\\right\\}$, prove that $\\limsup _{n \\rightarrow \\infty}\\left(a_{n}+b_{n}\\right) \\leq \\limsup _{n \\rightarrow \\infty} a_{n}+\\limsup _{n \\rightarrow \\infty} b_{n},$ provided the sum on the right is not of the form $\\infty-\\infty$.-/\n", "formal_statement": "theorem exercise_3_5\n (a b : )\n (h : limsup a + limsup b ≠ 0) :\n limsup (λ n => a n + b n) ≤ limsup a + limsup b :=", "goal": "a b : \nh : limsup a + limsup b ≠ 0\n⊢ (limsup fun n => a n + b n) ≤ limsup a + limsup b", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_6a", "split": "valid", "informal_prefix": "/-- Prove that $\\lim_{n \\rightarrow \\infty} \\sum_{i<n} a_i = \\infty$, where $a_i = \\sqrt{i + 1} -\\sqrt{i}$.-/\n", "formal_statement": "theorem exercise_3_6a\n: Tendsto (λ (n : ) => (∑ i in range n, g i)) atTop atTop :=", "goal": "⊢ Tendsto (fun n => ∑ i ∈ range n, g i) atTop atTop", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\nnoncomputable section\n\ndef g (n : ) : := sqrt (n + 1) - sqrt n\n\n"}
{"name": "exercise_3_7", "split": "test", "informal_prefix": "/-- Prove that the convergence of $\\Sigma a_{n}$ implies the convergence of $\\sum \\frac{\\sqrt{a_{n}}}{n}$ if $a_n\\geq 0$.-/\n", "formal_statement": "theorem exercise_3_7\n (a : )\n (h : ∃ y, (Tendsto (λ n => (∑ i in (range n), a i)) atTop (𝓝 y))) :\n ∃ y, Tendsto (λ n => (∑ i in (range n), sqrt (a i) / n)) atTop (𝓝 y) :=", "goal": "a : \nh : ∃ y, Tendsto (fun n => ∑ i ∈ range n, a i) atTop (𝓝 y)\n⊢ ∃ y, Tendsto (fun n => ∑ i ∈ range n, √(a i) / ↑n) atTop (𝓝 y)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_8", "split": "valid", "informal_prefix": "/-- If $\\Sigma a_{n}$ converges, and if $\\left\\{b_{n}\\right\\}$ is monotonic and bounded, prove that $\\Sigma a_{n} b_{n}$ converges.-/\n", "formal_statement": "theorem exercise_3_8\n (a b : )\n (h1 : ∃ y, (Tendsto (λ n => (∑ i in (range n), a i)) atTop (𝓝 y)))\n (h2 : Monotone b)\n (h3 : Bornology.IsBounded (Set.range b)) :\n ∃ y, Tendsto (λ n => (∑ i in (range n), (a i) * (b i))) atTop (𝓝 y) :=", "goal": "a b : \nh1 : ∃ y, Tendsto (fun n => ∑ i ∈ range n, a i) atTop (𝓝 y)\nh2 : Monotone b\nh3 : Bornology.IsBounded (Set.range b)\n⊢ ∃ y, Tendsto (fun n => ∑ i ∈ range n, a i * b i) atTop (𝓝 y)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_13", "split": "test", "informal_prefix": "/-- Prove that the Cauchy product of two absolutely convergent series converges absolutely.-/\n", "formal_statement": "theorem exercise_3_13\n (a b : )\n (ha : ∃ y, (Tendsto (λ n => (∑ i in (range n), |a i|)) atTop (𝓝 y)))\n (hb : ∃ y, (Tendsto (λ n => (∑ i in (range n), |b i|)) atTop (𝓝 y))) :\n ∃ y, (Tendsto (λ n => (∑ i in (range n),\n λ i => (∑ j in range (i + 1), a j * b (i - j)))) atTop (𝓝 y)) :=", "goal": "a b : \nha : ∃ y, Tendsto (fun n => ∑ i ∈ range n, |a i|) atTop (𝓝 y)\nhb : ∃ y, Tendsto (fun n => ∑ i ∈ range n, |b i|) atTop (𝓝 y)\n⊢ ∃ y, Tendsto (fun n => ∑ i ∈ range n, fun i => ∑ j ∈ range (i + 1), a j * b (i - j)) atTop (𝓝 y)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_20", "split": "valid", "informal_prefix": "/-- Suppose $\\left\\{p_{n}\\right\\}$ is a Cauchy sequence in a metric space $X$, and some sequence $\\left\\{p_{n l}\\right\\}$ converges to a point $p \\in X$. Prove that the full sequence $\\left\\{p_{n}\\right\\}$ converges to $p$.-/\n", "formal_statement": "theorem exercise_3_20 {X : Type*} [MetricSpace X]\n (p : → X) (l : ) (r : X)\n (hp : CauchySeq p)\n (hpl : Tendsto (λ n => p (l * n)) atTop (𝓝 r)) :\n Tendsto p atTop (𝓝 r) :=", "goal": "X : Type u_1\ninst✝ : MetricSpace X\np : → X\nl : \nr : X\nhp : CauchySeq p\nhpl : Tendsto (fun n => p (l * n)) atTop (𝓝 r)\n⊢ Tendsto p atTop (𝓝 r)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_21", "split": "test", "informal_prefix": "/-- If $\\left\\{E_{n}\\right\\}$ is a sequence of closed nonempty and bounded sets in a complete metric space $X$, if $E_{n} \\supset E_{n+1}$, and if $\\lim _{n \\rightarrow \\infty} \\operatorname{diam} E_{n}=0,$ then $\\bigcap_{1}^{\\infty} E_{n}$ consists of exactly one point.-/\n", "formal_statement": "theorem exercise_3_21\n {X : Type*} [MetricSpace X] [CompleteSpace X]\n (E : → Set X)\n (hE : ∀ n, E n ⊃ E (n + 1))\n (hE' : Tendsto (λ n => Metric.diam (E n)) atTop (𝓝 0)) :\n ∃ a, Set.iInter E = {a} :=", "goal": "X : Type u_1\ninst✝¹ : MetricSpace X\ninst✝ : CompleteSpace X\nE : → Set X\nhE : ∀ (n : ), E n ⊃ E (n + 1)\nhE' : Tendsto (fun n => Metric.diam (E n)) atTop (𝓝 0)\n⊢ ∃ a, Set.iInter E = {a}", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_22", "split": "valid", "informal_prefix": "/-- Suppose $X$ is a nonempty complete metric space, and $\\left\\{G_{n}\\right\\}$ is a sequence of dense open sets of $X$. Prove Baire's theorem, namely, that $\\bigcap_{1}^{\\infty} G_{n}$ is not empty.-/\n", "formal_statement": "theorem exercise_3_22 (X : Type*) [MetricSpace X] [CompleteSpace X]\n (G : → Set X) (hG : ∀ n, IsOpen (G n) ∧ Dense (G n)) :\n ∃ x, ∀ n, x ∈ G n :=", "goal": "X : Type u_1\ninst✝¹ : MetricSpace X\ninst✝ : CompleteSpace X\nG : → Set X\nhG : ∀ (n : ), IsOpen (G n) ∧ Dense (G n)\n⊢ ∃ x, ∀ (n : ), x ∈ G n", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_1a", "split": "test", "informal_prefix": "/-- Suppose $f$ is a real function defined on $\\mathbb{R}$ which satisfies $\\lim_{h \\rightarrow 0} f(x + h) - f(x - h) = 0$ for every $x \\in \\mathbb{R}$. Show that $f$ does not need to be continuous.-/\n", "formal_statement": "theorem exercise_4_1a\n : ∃ (f : ), (∀ (x : ), Tendsto (λ y => f (x + y) - f (x - y)) (𝓝 0) (𝓝 0)) ∧ ¬ Continuous f :=", "goal": "⊢ ∃ f, (∀ (x : ), Tendsto (fun y => f (x + y) - f (x - y)) (𝓝 0) (𝓝 0)) ∧ ¬Continuous f", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_2a", "split": "valid", "informal_prefix": "/-- If $f$ is a continuous mapping of a metric space $X$ into a metric space $Y$, prove that $f(\\overline{E}) \\subset \\overline{f(E)}$ for every set $E \\subset X$. ($\\overline{E}$ denotes the closure of $E$).-/\n", "formal_statement": "theorem exercise_4_2a\n {α : Type} [MetricSpace α]\n {β : Type} [MetricSpace β]\n (f : α → β)\n (h₁ : Continuous f)\n : ∀ (x : Set α), f '' (closure x) ⊆ closure (f '' x) :=", "goal": "α : Type\ninst✝¹ : MetricSpace α\nβ : Type\ninst✝ : MetricSpace β\nf : α → β\nh₁ : Continuous f\n⊢ ∀ (x : Set α), f '' closure x ⊆ closure (f '' x)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_3", "split": "test", "informal_prefix": "/-- Let $f$ be a continuous real function on a metric space $X$. Let $Z(f)$ (the zero set of $f$ ) be the set of all $p \\in X$ at which $f(p)=0$. Prove that $Z(f)$ is closed.-/\n", "formal_statement": "theorem exercise_4_3\n {α : Type} [MetricSpace α]\n (f : α) (h : Continuous f) (z : Set α) (g : z = f⁻¹' {0})\n : IsClosed z :=", "goal": "α : Type\ninst✝ : MetricSpace α\nf : α\nh : Continuous f\nz : Set α\ng : z = f ⁻¹' {0}\n⊢ IsClosed z", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4a", "split": "valid", "informal_prefix": "/-- Let $f$ and $g$ be continuous mappings of a metric space $X$ into a metric space $Y$, and let $E$ be a dense subset of $X$. Prove that $f(E)$ is dense in $f(X)$.-/\n", "formal_statement": "theorem exercise_4_4a\n {α : Type} [MetricSpace α]\n {β : Type} [MetricSpace β]\n (f : α → β)\n (s : Set α)\n (h₁ : Continuous f)\n (h₂ : Dense s)\n : f '' Set.univ ⊆ closure (f '' s) :=", "goal": "α : Type\ninst✝¹ : MetricSpace α\nβ : Type\ninst✝ : MetricSpace β\nf : α → β\ns : Set α\nh₁ : Continuous f\nh₂ : Dense s\n⊢ f '' Set.univ ⊆ closure (f '' s)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4b", "split": "test", "informal_prefix": "/-- Let $f$ and $g$ be continuous mappings of a metric space $X$ into a metric space $Y$, and let $E$ be a dense subset of $X$. Prove that if $g(p) = f(p)$ for all $p \\in P$ then $g(p) = f(p)$ for all $p \\in X$.-/\n", "formal_statement": "theorem exercise_4_4b\n {α : Type} [MetricSpace α]\n {β : Type} [MetricSpace β]\n (f g : α → β)\n (s : Set α)\n (h₁ : Continuous f)\n (h₂ : Continuous g)\n (h₃ : Dense s)\n (h₄ : ∀ x ∈ s, f x = g x)\n : f = g :=", "goal": "α : Type\ninst✝¹ : MetricSpace α\nβ : Type\ninst✝ : MetricSpace β\nf g : α → β\ns : Set α\nh₁ : Continuous f\nh₂ : Continuous g\nh₃ : Dense s\nh₄ : ∀ x ∈ s, f x = g x\n⊢ f = g", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5a", "split": "valid", "informal_prefix": "/-- If $f$ is a real continuous function defined on a closed set $E \\subset \\mathbb{R}$, prove that there exist continuous real functions $g$ on $\\mathbb{R}$ such that $g(x)=f(x)$ for all $x \\in E$.-/\n", "formal_statement": "theorem exercise_4_5a\n (f : )\n (E : Set )\n (h₁ : IsClosed E)\n (h₂ : ContinuousOn f E)\n : ∃ (g : ), Continuous g ∧ ∀ x ∈ E, f x = g x :=", "goal": "f : \nE : Set \nh₁ : IsClosed E\nh₂ : ContinuousOn f E\n⊢ ∃ g, Continuous g ∧ ∀ x ∈ E, f x = g x", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5b", "split": "test", "informal_prefix": "/-- Show that there exist a set $E \\subset \\mathbb{R}$ and a real continuous function $f$ defined on $E$, such that there does not exist a continuous real function $g$ on $\\mathbb{R}$ such that $g(x)=f(x)$ for all $x \\in E$.-/\n", "formal_statement": "theorem exercise_4_5b\n : ∃ (E : Set ) (f : ), (ContinuousOn f E) ∧\n (¬ ∃ (g : ), Continuous g ∧ ∀ x ∈ E, f x = g x) :=", "goal": "⊢ ∃ E f, ContinuousOn f E ∧ ¬∃ g, Continuous g ∧ ∀ x ∈ E, f x = g x", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_6", "split": "valid", "informal_prefix": "/-- If $f$ is defined on $E$, the graph of $f$ is the set of points $(x, f(x))$, for $x \\in E$. In particular, if $E$ is a set of real numbers, and $f$ is real-valued, the graph of $f$ is a subset of the plane. Suppose $E$ is compact, and prove that $f$ is continuous on $E$ if and only if its graph is compact.-/\n", "formal_statement": "theorem exercise_4_6\n (f : )\n (E : Set )\n (G : Set ( × ))\n (h₁ : IsCompact E)\n (h₂ : G = {(x, f x) | x ∈ E})\n : ContinuousOn f E ↔ IsCompact G :=", "goal": "f : \nE : Set \nG : Set ( × )\nh₁ : IsCompact E\nh₂ : G = {x | ∃ x_1 ∈ E, (x_1, f x_1) = x}\n⊢ ContinuousOn f E ↔ IsCompact G", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_8a", "split": "test", "informal_prefix": "/-- Let $f$ be a real uniformly continuous function on the bounded set $E$ in $R^{1}$. Prove that $f$ is bounded on $E$.-/\n", "formal_statement": "theorem exercise_4_8a\n (E : Set ) (f : ) (hf : UniformContinuousOn f E)\n (hE : Bornology.IsBounded E) : Bornology.IsBounded (Set.image f E) :=", "goal": "E : Set \nf : \nhf : UniformContinuousOn f E\nhE : Bornology.IsBounded E\n⊢ Bornology.IsBounded (f '' E)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_8b", "split": "valid", "informal_prefix": "/-- Let $E$ be a bounded set in $R^{1}$. Prove that there exists a real function $f$ such that $f$ is uniformly continuous and is not bounded on $E$.-/\n", "formal_statement": "theorem exercise_4_8b\n (E : Set ) :\n ∃ f : , UniformContinuousOn f E ∧ ¬ Bornology.IsBounded (Set.image f E) :=", "goal": "E : Set \n⊢ ∃ f, UniformContinuousOn f E ∧ ¬Bornology.IsBounded (f '' E)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_11a", "split": "test", "informal_prefix": "/-- Suppose $f$ is a uniformly continuous mapping of a metric space $X$ into a metric space $Y$ and prove that $\\left\\{f\\left(x_{n}\\right)\\right\\}$ is a Cauchy sequence in $Y$ for every Cauchy sequence $\\{x_n\\}$ in $X$.-/\n", "formal_statement": "theorem exercise_4_11a\n {X : Type*} [MetricSpace X]\n {Y : Type*} [MetricSpace Y]\n (f : X → Y) (hf : UniformContinuous f)\n (x : → X) (hx : CauchySeq x) :\n CauchySeq (λ n => f (x n)) :=", "goal": "X : Type u_1\ninst✝¹ : MetricSpace X\nY : Type u_2\ninst✝ : MetricSpace Y\nf : X → Y\nhf : UniformContinuous f\nx : → X\nhx : CauchySeq x\n⊢ CauchySeq fun n => f (x n)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_12", "split": "valid", "informal_prefix": "/-- A uniformly continuous function of a uniformly continuous function is uniformly continuous.-/\n", "formal_statement": "theorem exercise_4_12\n {α β γ : Type*} [UniformSpace α] [UniformSpace β] [UniformSpace γ]\n {f : α → β} {g : β → γ}\n (hf : UniformContinuous f) (hg : UniformContinuous g) :\n UniformContinuous (g ∘ f) :=", "goal": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ng : β → γ\nhf : UniformContinuous f\nhg : UniformContinuous g\n⊢ UniformContinuous (g ∘ f)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_15", "split": "test", "informal_prefix": "/-- Prove that every continuous open mapping of $R^{1}$ into $R^{1}$ is monotonic.-/\n", "formal_statement": "theorem exercise_4_15 {f : }\n (hf : Continuous f) (hof : IsOpenMap f) :\n Monotone f :=", "goal": "f : \nhf : Continuous f\nhof : IsOpenMap f\n⊢ Monotone f", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_19", "split": "valid", "informal_prefix": "/-- Suppose $f$ is a real function with domain $R^{1}$ which has the intermediate value property: if $f(a)<c<f(b)$, then $f(x)=c$ for some $x$ between $a$ and $b$. Suppose also, for every rational $r$, that the set of all $x$ with $f(x)=r$ is closed. Prove that $f$ is continuous.-/\n", "formal_statement": "theorem exercise_4_19\n {f : } (hf : ∀ a b c, a < b → f a < c → c < f b → ∃ x, a < x ∧ x < b ∧ f x = c)\n (hg : ∀ r : , IsClosed {x | f x = r}) : Continuous f :=", "goal": "f : \nhf : ∀ (a b c : ), a < b → f a < c → c < f b → ∃ x, a < x ∧ x < b ∧ f x = c\nhg : ∀ (r : ), IsClosed {x | f x = ↑r}\n⊢ Continuous f", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_21a", "split": "test", "informal_prefix": "/-- Suppose $K$ and $F$ are disjoint sets in a metric space $X, K$ is compact, $F$ is closed. Prove that there exists $\\delta>0$ such that $d(p, q)>\\delta$ if $p \\in K, q \\in F$.-/\n", "formal_statement": "theorem exercise_4_21a {X : Type*} [MetricSpace X]\n (K F : Set X) (hK : IsCompact K) (hF : IsClosed F) (hKF : Disjoint K F) :\n ∃ (δ : ), δ > 0 ∧ ∀ (p q : X), p ∈ K → q ∈ F → dist p q ≥ δ :=", "goal": "X : Type u_1\ninst✝ : MetricSpace X\nK F : Set X\nhK : IsCompact K\nhF : IsClosed F\nhKF : Disjoint K F\n⊢ ∃ δ > 0, ∀ (p q : X), p ∈ K → q ∈ F → dist p q ≥ δ", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_24", "split": "valid", "informal_prefix": "/-- Assume that $f$ is a continuous real function defined in $(a, b)$ such that $f\\left(\\frac{x+y}{2}\\right) \\leq \\frac{f(x)+f(y)}{2}$ for all $x, y \\in(a, b)$. Prove that $f$ is convex.-/\n", "formal_statement": "theorem exercise_4_24 {f : }\n (hf : Continuous f) (a b : ) (hab : a < b)\n (h : ∀ x y : , a < x → x < b → a < y → y < b → f ((x + y) / 2) ≤ (f x + f y) / 2) :\n ConvexOn (Set.Ioo a b) f :=", "goal": "f : \nhf : Continuous f\na b : \nhab : a < b\nh : ∀ (x y : ), a < x → x < b → a < y → y < b → f ((x + y) / 2) ≤ (f x + f y) / 2\n⊢ ConvexOn (Set.Ioo a b) f", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_1", "split": "test", "informal_prefix": "/-- Let $f$ be defined for all real $x$, and suppose that $|f(x)-f(y)| \\leq (x-y)^{2}$ for all real $x$ and $y$. Prove that $f$ is constant.-/\n", "formal_statement": "theorem exercise_5_1\n {f : } (hf : ∀ x y : , |(f x - f y)| ≤ (x - y) ^ 2) :\n ∃ c, f = λ x => c :=", "goal": "f : \nhf : ∀ (x y : ), |f x - f y| ≤ (x - y) ^ 2\n⊢ ∃ c, f = fun x => c", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_2", "split": "valid", "informal_prefix": "/-- Suppose $f^{\\prime}(x)>0$ in $(a, b)$. Prove that $f$ is strictly increasing in $(a, b)$, and let $g$ be its inverse function. Prove that $g$ is differentiable, and that $g^{\\prime}(f(x))=\\frac{1}{f^{\\prime}(x)} \\quad(a<x<b)$.-/\n", "formal_statement": "theorem exercise_5_2 {a b : }\n {f g : } (hf : ∀ x ∈ Set.Ioo a b, deriv f x > 0)\n (hg : g = f⁻¹)\n (hg_diff : DifferentiableOn g (Set.Ioo a b)) :\n DifferentiableOn g (Set.Ioo a b) ∧\n ∀ x ∈ Set.Ioo a b, deriv g x = 1 / deriv f x :=", "goal": "a b : \nf g : \nhf : ∀ x ∈ Set.Ioo a b, deriv f x > 0\nhg : g = f⁻¹\nhg_diff : DifferentiableOn g (Set.Ioo a b)\n⊢ DifferentiableOn g (Set.Ioo a b) ∧ ∀ x ∈ Set.Ioo a b, deriv g x = 1 / deriv f x", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_3", "split": "test", "informal_prefix": "/-- Suppose $g$ is a real function on $R^{1}$, with bounded derivative (say $\\left|g^{\\prime}\\right| \\leq M$ ). Fix $\\varepsilon>0$, and define $f(x)=x+\\varepsilon g(x)$. Prove that $f$ is one-to-one if $\\varepsilon$ is small enough.-/\n", "formal_statement": "theorem exercise_5_3 {g : } (hg : Continuous g)\n (hg' : ∃ M : , ∀ x : , |deriv g x| ≤ M) :\n ∃ N, ∀ ε > 0, ε < N → Function.Injective (λ x : => x + ε * g x) :=", "goal": "g : \nhg : Continuous g\nhg' : ∃ M, ∀ (x : ), |deriv g x| ≤ M\n⊢ ∃ N, ∀ ε > 0, ε < N → Function.Injective fun x => x + ε * g x", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_4", "split": "valid", "informal_prefix": "/-- If $C_{0}+\\frac{C_{1}}{2}+\\cdots+\\frac{C_{n-1}}{n}+\\frac{C_{n}}{n+1}=0,$ where $C_{0}, \\ldots, C_{n}$ are real constants, prove that the equation $C_{0}+C_{1} x+\\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$ has at least one real root between 0 and 1.-/\n", "formal_statement": "theorem exercise_5_4 {n : }\n (C : )\n (hC : ∑ i in (range (n + 1)), (C i) / (i + 1) = 0) :\n ∃ x, x ∈ (Set.Icc (0 : ) 1) ∧ ∑ i in range (n + 1), (C i) * (x^i) = 0 :=", "goal": "n : \nC : \nhC : ∑ i ∈ range (n + 1), C i / (↑i + 1) = 0\n⊢ ∃ x ∈ Set.Icc 0 1, ∑ i ∈ range (n + 1), C i * x ^ i = 0", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_5", "split": "test", "informal_prefix": "/-- Suppose $f$ is defined and differentiable for every $x>0$, and $f^{\\prime}(x) \\rightarrow 0$ as $x \\rightarrow+\\infty$. Put $g(x)=f(x+1)-f(x)$. Prove that $g(x) \\rightarrow 0$ as $x \\rightarrow+\\infty$.-/\n", "formal_statement": "theorem exercise_5_5\n {f : }\n (hfd : Differentiable f)\n (hf : Tendsto (deriv f) atTop (𝓝 0)) :\n Tendsto (λ x => f (x + 1) - f x) atTop atTop :=", "goal": "f : \nhfd : Differentiable f\nhf : Tendsto (deriv f) atTop (𝓝 0)\n⊢ Tendsto (fun x => f (x + 1) - f x) atTop atTop", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_6", "split": "valid", "informal_prefix": "/-- Suppose (a) $f$ is continuous for $x \\geq 0$, (b) $f^{\\prime}(x)$ exists for $x>0$, (c) $f(0)=0$, (d) $f^{\\prime}$ is monotonically increasing. Put $g(x)=\\frac{f(x)}{x} \\quad(x>0)$ and prove that $g$ is monotonically increasing.-/\n", "formal_statement": "theorem exercise_5_6\n {f : }\n (hf1 : Continuous f)\n (hf2 : ∀ x, DifferentiableAt f x)\n (hf3 : f 0 = 0)\n (hf4 : Monotone (deriv f)) :\n MonotoneOn (λ x => f x / x) (Set.Ioi 0) :=", "goal": "f : \nhf1 : Continuous f\nhf2 : ∀ (x : ), DifferentiableAt f x\nhf3 : f 0 = 0\nhf4 : Monotone (deriv f)\n⊢ MonotoneOn (fun x => f x / x) (Set.Ioi 0)", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_7", "split": "test", "informal_prefix": "/-- Suppose $f^{\\prime}(x), g^{\\prime}(x)$ exist, $g^{\\prime}(x) \\neq 0$, and $f(x)=g(x)=0$. Prove that $\\lim _{t \\rightarrow x} \\frac{f(t)}{g(t)}=\\frac{f^{\\prime}(x)}{g^{\\prime}(x)}.$-/\n", "formal_statement": "theorem exercise_5_7\n {f g : } {x : }\n (hf' : DifferentiableAt f 0)\n (hg' : DifferentiableAt g 0)\n (hg'_ne_0 : deriv g 0 ≠ 0)\n (f0 : f 0 = 0) (g0 : g 0 = 0) :\n Tendsto (λ x => f x / g x) (𝓝 x) (𝓝 (deriv f x / deriv g x)) :=", "goal": "f g : \nx : \nhf' : DifferentiableAt f 0\nhg' : DifferentiableAt g 0\nhg'_ne_0 : deriv g 0 ≠ 0\nf0 : f 0 = 0\ng0 : g 0 = 0\n⊢ Tendsto (fun x => f x / g x) (𝓝 x) (𝓝 (deriv f x / deriv g x))", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_15", "split": "valid", "informal_prefix": "/-- Suppose $a \\in R^{1}, f$ is a twice-differentiable real function on $(a, \\infty)$, and $M_{0}, M_{1}, M_{2}$ are the least upper bounds of $|f(x)|,\\left|f^{\\prime}(x)\\right|,\\left|f^{\\prime \\prime}(x)\\right|$, respectively, on $(a, \\infty)$. Prove that $M_{1}^{2} \\leq 4 M_{0} M_{2} .$-/\n", "formal_statement": "theorem exercise_5_15 {f : } (a M0 M1 M2 : )\n (hf' : DifferentiableOn f (Set.Ici a))\n (hf'' : DifferentiableOn (deriv f) (Set.Ici a))\n (hM0 : M0 = sSup {(|f x|) | x ∈ (Set.Ici a)})\n (hM1 : M1 = sSup {(|deriv f x|) | x ∈ (Set.Ici a)})\n (hM2 : M2 = sSup {(|deriv (deriv f) x|) | x ∈ (Set.Ici a)}) :\n (M1 ^ 2) ≤ 4 * M0 * M2 :=", "goal": "f : \na M0 M1 M2 : \nhf' : DifferentiableOn f (Set.Ici a)\nhf'' : DifferentiableOn (deriv f) (Set.Ici a)\nhM0 : M0 = sSup {x | ∃ x_1 ∈ Set.Ici a, |f x_1| = x}\nhM1 : M1 = sSup {x | ∃ x_1 ∈ Set.Ici a, |deriv f x_1| = x}\nhM2 : M2 = sSup {x | ∃ x_1 ∈ Set.Ici a, |deriv (deriv f) x_1| = x}\n⊢ M1 ^ 2 ≤ 4 * M0 * M2", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_17", "split": "test", "informal_prefix": "/-- Suppose $f$ is a real, three times differentiable function on $[-1,1]$, such that $f(-1)=0, \\quad f(0)=0, \\quad f(1)=1, \\quad f^{\\prime}(0)=0 .$ Prove that $f^{(3)}(x) \\geq 3$ for some $x \\in(-1,1)$.-/\n", "formal_statement": "theorem exercise_5_17\n {f : }\n (hf' : DifferentiableOn f (Set.Icc (-1) 1))\n (hf'' : DifferentiableOn (deriv f) (Set.Icc 1 1))\n (hf''' : DifferentiableOn (deriv (deriv f)) (Set.Icc 1 1))\n (hf0 : f (-1) = 0)\n (hf1 : f 0 = 0)\n (hf2 : f 1 = 1)\n (hf3 : deriv f 0 = 0) :\n ∃ x, x ∈ Set.Ioo (-1 : ) 1 ∧ deriv (deriv (deriv f)) x ≥ 3 :=", "goal": "f : \nhf' : DifferentiableOn f (Set.Icc (-1) 1)\nhf'' : DifferentiableOn (deriv f) (Set.Icc 1 1)\nhf''' : DifferentiableOn (deriv (deriv f)) (Set.Icc 1 1)\nhf0 : f (-1) = 0\nhf1 : f 0 = 0\nhf2 : f 1 = 1\nhf3 : deriv f 0 = 0\n⊢ ∃ x ∈ Set.Ioo (-1) 1, deriv (deriv (deriv f)) x ≥ 3", "header": "import Mathlib\n\nopen Topology Filter Real Complex TopologicalSpace Finset\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_1_18", "split": "test", "informal_prefix": "/-- If $G$ is a finite group of even order, show that there must be an element $a \\neq e$ such that $a=a^{-1}$.-/\n", "formal_statement": "theorem exercise_2_1_18 {G : Type*} [Group G]\n [Fintype G] (hG2 : Even (card G)) :\n ∃ (a : G), a ≠ 1 ∧ a = a⁻¹ :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG2 : Even (card G)\n⊢ ∃ a, a ≠ 1 ∧ a = a⁻¹", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_1_21", "split": "valid", "informal_prefix": "/-- Show that a group of order 5 must be abelian.-/\n", "formal_statement": "def exercise_2_1_21 (G : Type*) [Group G] [Fintype G]\n (hG : card G = 5) :\n CommGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 5\n⊢ CommGroup G", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_1_26", "split": "test", "informal_prefix": "/-- If $G$ is a finite group, prove that, given $a \\in G$, there is a positive integer $n$, depending on $a$, such that $a^n = e$.-/\n", "formal_statement": "theorem exercise_2_1_26 {G : Type*} [Group G]\n [Fintype G] (a : G) : ∃ (n : ), a ^ n = 1 :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\na : G\n⊢ ∃ n, a ^ n = 1", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_1_27", "split": "valid", "informal_prefix": "/-- If $G$ is a finite group, prove that there is an integer $m > 0$ such that $a^m = e$ for all $a \\in G$.-/\n", "formal_statement": "theorem exercise_2_1_27 {G : Type*} [Group G]\n [Fintype G] : ∃ (m : ), ∀ (a : G), a ^ m = 1 :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\n⊢ ∃ m, ∀ (a : G), a ^ m = 1", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_2_3", "split": "test", "informal_prefix": "/-- If $G$ is a group in which $(a b)^{i}=a^{i} b^{i}$ for three consecutive integers $i$, prove that $G$ is abelian.-/\n", "formal_statement": "def exercise_2_2_3 {G : Type*} [Group G]\n {P : → Prop} {hP : P = λ i => ∀ a b : G, (a*b)^i = a^i * b^i}\n (hP1 : ∃ n : , P n ∧ P (n+1) ∧ P (n+2)) : CommGroup G :=", "goal": "G : Type u_1\ninst✝ : Group G\nP : → Prop\nhP : P = fun i => ∀ (a b : G), (a * b) ^ i = a ^ i * b ^ i\nhP1 : ∃ n, P n ∧ P (n + 1) ∧ P (n + 2)\n⊢ CommGroup G", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_2_5", "split": "valid", "informal_prefix": "/-- Let $G$ be a group in which $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all $a, b \\in G$. Show that $G$ is abelian.-/\n", "formal_statement": "def exercise_2_2_5 {G : Type*} [Group G]\n (h : ∀ (a b : G), (a * b) ^ 3 = a ^ 3 * b ^ 3 ∧ (a * b) ^ 5 = a ^ 5 * b ^ 5) :\n CommGroup G :=", "goal": "G : Type u_1\ninst✝ : Group G\nh : ∀ (a b : G), (a * b) ^ 3 = a ^ 3 * b ^ 3 ∧ (a * b) ^ 5 = a ^ 5 * b ^ 5\n⊢ CommGroup G", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_2_6c", "split": "test", "informal_prefix": "/-- Let $G$ be a group in which $(a b)^{n}=a^{n} b^{n}$ for some fixed integer $n>1$ for all $a, b \\in G$. For all $a, b \\in G$, prove that $\\left(a b a^{-1} b^{-1}\\right)^{n(n-1)}=e$.-/\n", "formal_statement": "theorem exercise_2_2_6c {G : Type*} [Group G] {n : } (hn : n > 1)\n (h : ∀ (a b : G), (a * b) ^ n = a ^ n * b ^ n) :\n ∀ (a b : G), (a * b * a⁻¹ * b⁻¹) ^ (n * (n - 1)) = 1 :=", "goal": "G : Type u_1\ninst✝ : Group G\nn : \nhn : n > 1\nh : ∀ (a b : G), (a * b) ^ n = a ^ n * b ^ n\n⊢ ∀ (a b : G), (a * b * a⁻¹ * b⁻¹) ^ (n * (n - 1)) = 1", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_3_17", "split": "valid", "informal_prefix": "/-- If $G$ is a group and $a, x \\in G$, prove that $C\\left(x^{-1} a x\\right)=x^{-1} C(a) x$-/\n", "formal_statement": "theorem exercise_2_3_17 {G : Type*} [Mul G] [Group G] (a x : G) :\n centralizer {x⁻¹*a*x} =\n (λ g : G => x⁻¹*g*x) '' (centralizer {a}) :=", "goal": "G : Type u_1\ninst✝¹ : Mul G\ninst✝ : Group G\na x : G\n⊢ {x⁻¹ * a * x}.centralizer = (fun g => x⁻¹ * g * x) '' {a}.centralizer", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_3_16", "split": "test", "informal_prefix": "/-- If a group $G$ has no proper subgroups, prove that $G$ is cyclic of order $p$, where $p$ is a prime number.-/\n", "formal_statement": "theorem exercise_2_3_16 {G : Type*} [Group G]\n (hG : ∀ H : Subgroup G, H = H = ⊥) :\n IsCyclic G ∧ ∃ (p : ) (Fin : Fintype G), Nat.Prime p ∧ @card G Fin = p :=", "goal": "G : Type u_1\ninst✝ : Group G\nhG : ∀ (H : Subgroup G), H = H = ⊥\n⊢ IsCyclic G ∧ ∃ p Fin, p.Prime ∧ card G = p", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_4_36", "split": "valid", "informal_prefix": "/-- If $a > 1$ is an integer, show that $n \\mid \\varphi(a^n - 1)$, where $\\phi$ is the Euler $\\varphi$-function.-/\n", "formal_statement": "theorem exercise_2_4_36 {a n : } (h : a > 1) :\n n (a ^ n - 1).totient :=", "goal": "a n : \nh : a > 1\n⊢ n (a ^ n - 1).totient", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_23", "split": "test", "informal_prefix": "/-- Let $G$ be a group such that all subgroups of $G$ are normal in $G$. If $a, b \\in G$, prove that $ba = a^jb$ for some $j$.-/\n", "formal_statement": "theorem exercise_2_5_23 {G : Type*} [Group G]\n (hG : ∀ (H : Subgroup G), H.Normal) (a b : G) :\n ∃ (j : ) , b*a = a^j * b :=", "goal": "G : Type u_1\ninst✝ : Group G\nhG : ∀ (H : Subgroup G), H.Normal\na b : G\n⊢ ∃ j, b * a = a ^ j * b", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_30", "split": "valid", "informal_prefix": "/-- Suppose that $|G| = pm$, where $p \\nmid m$ and $p$ is a prime. If $H$ is a normal subgroup of order $p$ in $G$, prove that $H$ is characteristic.-/\n", "formal_statement": "theorem exercise_2_5_30 {G : Type*} [Group G] [Fintype G]\n {p m : } (hp : Nat.Prime p) (hp1 : ¬ p m) (hG : card G = p*m)\n {H : Subgroup G} [Fintype H] [H.Normal] (hH : card H = p):\n Subgroup.Characteristic H :=", "goal": "G : Type u_1\ninst✝³ : Group G\ninst✝² : Fintype G\np m : \nhp : p.Prime\nhp1 : ¬p m\nhG : card G = p * m\nH : Subgroup G\ninst✝¹ : Fintype ↥H\ninst✝ : H.Normal\nhH : card ↥H = p\n⊢ H.Characteristic", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_31", "split": "test", "informal_prefix": "/-- Suppose that $G$ is an abelian group of order $p^nm$ where $p \\nmid m$ is a prime. If $H$ is a subgroup of $G$ of order $p^n$, prove that $H$ is a characteristic subgroup of $G$.-/\n", "formal_statement": "theorem exercise_2_5_31 {G : Type*} [CommGroup G] [Fintype G]\n {p m n : } (hp : Nat.Prime p) (hp1 : ¬ p m) (hG : card G = p^n*m)\n {H : Subgroup G} [Fintype H] (hH : card H = p^n) :\n Subgroup.Characteristic H :=", "goal": "G : Type u_1\ninst✝² : CommGroup G\ninst✝¹ : Fintype G\np m n : \nhp : p.Prime\nhp1 : ¬p m\nhG : card G = p ^ n * m\nH : Subgroup G\ninst✝ : Fintype ↥H\nhH : card ↥H = p ^ n\n⊢ H.Characteristic", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_37", "split": "valid", "informal_prefix": "/-- If $G$ is a nonabelian group of order 6, prove that $G \\simeq S_3$.-/\n", "formal_statement": "def exercise_2_5_37 (G : Type*) [Group G] [Fintype G]\n (hG : card G = 6) (hG' : IsEmpty (CommGroup G)) :\n G ≃* Equiv.Perm (Fin 3) :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 6\nhG' : IsEmpty (CommGroup G)\n⊢ G ≃* Equiv.Perm (Fin 3)", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_43", "split": "test", "informal_prefix": "/-- Prove that a group of order 9 must be abelian.-/\n", "formal_statement": "def exercise_2_5_43 (G : Type*) [Group G] [Fintype G]\n (hG : card G = 9) :\n CommGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 9\n⊢ CommGroup G", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_44", "split": "valid", "informal_prefix": "/-- Prove that a group of order $p^2$, $p$ a prime, has a normal subgroup of order $p$.-/\n", "formal_statement": "theorem exercise_2_5_44 {G : Type*} [Group G] [Fintype G] {p : }\n (hp : Nat.Prime p) (hG : card G = p^2) :\n ∃ (N : Subgroup G) (Fin : Fintype N), @card N Fin = p ∧ N.Normal :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\np : \nhp : p.Prime\nhG : card G = p ^ 2\n⊢ ∃ N Fin, card ↥N = p ∧ N.Normal", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_5_52", "split": "test", "informal_prefix": "/-- Let $G$ be a finite group and $\\varphi$ an automorphism of $G$ such that $\\varphi(x) = x^{-1}$ for more than three-fourths of the elements of $G$. Prove that $\\varphi(y) = y^{-1}$ for all $y \\in G$, and so $G$ is abelian.-/\n", "formal_statement": "theorem exercise_2_5_52 {G : Type*} [Group G] [Fintype G]\n (φ : G ≃* G) {I : Finset G} (hI : ∀ x ∈ I, φ x = x⁻¹)\n (hI1 : (0.75 : ) * card G ≤ card I) :\n ∀ x : G, φ x = x⁻¹ ∧ ∀ x y : G, x*y = y*x :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nφ : G ≃* G\nI : Finset G\nhI : ∀ x ∈ I, φ x = x⁻¹\nhI1 : 0.75 * ↑(card G) ≤ ↑(card { x // x ∈ I })\n⊢ ∀ (x : G), φ x = x⁻¹ ∧ ∀ (x y : G), x * y = y * x", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_6_15", "split": "valid", "informal_prefix": "/-- If $G$ is an abelian group and if $G$ has an element of order $m$ and one of order $n$, where $m$ and $n$ are relatively prime, prove that $G$ has an element of order $mn$.-/\n", "formal_statement": "theorem exercise_2_6_15 {G : Type*} [CommGroup G] {m n : }\n (hm : ∃ (g : G), orderOf g = m)\n (hn : ∃ (g : G), orderOf g = n)\n (hmn : m.Coprime n) :\n ∃ (g : G), orderOf g = m * n :=", "goal": "G : Type u_1\ninst✝ : CommGroup G\nm n : \nhm : ∃ g, orderOf g = m\nhn : ∃ g, orderOf g = n\nhmn : m.Coprime n\n⊢ ∃ g, orderOf g = m * n", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_7_7", "split": "test", "informal_prefix": "/-- If $\\varphi$ is a homomorphism of $G$ onto $G'$ and $N \\triangleleft G$, show that $\\varphi(N) \\triangleleft G'$.-/\n", "formal_statement": "theorem exercise_2_7_7 {G : Type*} [Group G] {G' : Type*} [Group G']\n (φ : G →* G') (N : Subgroup G) [N.Normal] :\n (Subgroup.map φ N).Normal :=", "goal": "G : Type u_1\ninst✝² : Group G\nG' : Type u_2\ninst✝¹ : Group G'\nφ : G →* G'\nN : Subgroup G\ninst✝ : N.Normal\n⊢ (Subgroup.map φ N).Normal", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_8_12", "split": "valid", "informal_prefix": "/-- Prove that any two nonabelian groups of order 21 are isomorphic.-/\n", "formal_statement": "def exercise_2_8_12 {G H : Type*} [Fintype G] [Fintype H]\n [Group G] [Group H] (hG : card G = 21) (hH : card H = 21)\n (hG1 : IsEmpty (CommGroup G)) (hH1 : IsEmpty (CommGroup H)) :\n G ≃* H :=", "goal": "G : Type u_1\nH : Type u_2\ninst✝³ : Fintype G\ninst✝² : Fintype H\ninst✝¹ : Group G\ninst✝ : Group H\nhG : card G = 21\nhH : card H = 21\nhG1 : IsEmpty (CommGroup G)\nhH1 : IsEmpty (CommGroup H)\n⊢ G ≃* H", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_8_15", "split": "test", "informal_prefix": "/-- Prove that if $p > q$ are two primes such that $q \\mid p - 1$, then any two nonabelian groups of order $pq$ are isomorphic.-/\n", "formal_statement": "def exercise_2_8_15 {G H: Type*} [Fintype G] [Group G] [Fintype H]\n [Group H] {p q : } (hp : Nat.Prime p) (hq : Nat.Prime q)\n (h : p > q) (h1 : q p - 1) (hG : card G = p*q) (hH : card G = p*q) :\n G ≃* H :=", "goal": "G : Type u_1\nH : Type u_2\ninst✝³ : Fintype G\ninst✝² : Group G\ninst✝¹ : Fintype H\ninst✝ : Group H\np q : \nhp : p.Prime\nhq : q.Prime\nh : p > q\nh1 : q p - 1\nhG hH : card G = p * q\n⊢ G ≃* H", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_9_2", "split": "valid", "informal_prefix": "/-- If $G_1$ and $G_2$ are cyclic groups of orders $m$ and $n$, respectively, prove that $G_1 \\times G_2$ is cyclic if and only if $m$ and $n$ are relatively prime.-/\n", "formal_statement": "theorem exercise_2_9_2 {G H : Type*} [Fintype G] [Fintype H] [Group G]\n [Group H] (hG : IsCyclic G) (hH : IsCyclic H) :\n IsCyclic (G × H) ↔ (card G).Coprime (card H) :=", "goal": "G : Type u_1\nH : Type u_2\ninst✝³ : Fintype G\ninst✝² : Fintype H\ninst✝¹ : Group G\ninst✝ : Group H\nhG : IsCyclic G\nhH : IsCyclic H\n⊢ IsCyclic (G × H) ↔ (card G).Coprime (card H)", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_10_1", "split": "test", "informal_prefix": "/-- Let $A$ be a normal subgroup of a group $G$, and suppose that $b \\in G$ is an element of prime order $p$, and that $b \\not\\in A$. Show that $A \\cap (b) = (e)$.-/\n", "formal_statement": "theorem exercise_2_10_1 {G : Type*} [Group G] (A : Subgroup G)\n [A.Normal] {b : G} (hp : Nat.Prime (orderOf b)) :\n A ⊓ (Subgroup.closure {b}) = ⊥ :=", "goal": "G : Type u_1\ninst✝¹ : Group G\nA : Subgroup G\ninst✝ : A.Normal\nb : G\nhp : (orderOf b).Prime\n⊢ A ⊓ Subgroup.closure {b} = ⊥", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_11_6", "split": "valid", "informal_prefix": "/-- If $P$ is a $p$-Sylow subgroup of $G$ and $P \\triangleleft G$, prove that $P$ is the only $p$-Sylow subgroup of $G$.-/\n", "formal_statement": "theorem exercise_2_11_6 {G : Type*} [Group G] {p : } (hp : Nat.Prime p)\n {P : Sylow p G} (hP : P.Normal) :\n ∀ (Q : Sylow p G), P = Q :=", "goal": "G : Type u_1\ninst✝ : Group G\np : \nhp : p.Prime\nP : Sylow p G\nhP : (↑P).Normal\n⊢ ∀ (Q : Sylow p G), P = Q", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_11_7", "split": "test", "informal_prefix": "/-- If $P \\triangleleft G$, $P$ a $p$-Sylow subgroup of $G$, prove that $\\varphi(P) = P$ for every automorphism $\\varphi$ of $G$.-/\n", "formal_statement": "theorem exercise_2_11_7 {G : Type*} [Group G] {p : } (hp : Nat.Prime p)\n {P : Sylow p G} (hP : P.Normal) :\n Subgroup.Characteristic (P : Subgroup G) :=", "goal": "G : Type u_1\ninst✝ : Group G\np : \nhp : p.Prime\nP : Sylow p G\nhP : (↑P).Normal\n⊢ (↑P).Characteristic", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_11_22", "split": "valid", "informal_prefix": "/-- Show that any subgroup of order $p^{n-1}$ in a group $G$ of order $p^n$ is normal in $G$.-/\n", "formal_statement": "theorem exercise_2_11_22 {p : } {n : } {G : Type*} [Fintype G]\n [Group G] (hp : Nat.Prime p) (hG : card G = p ^ n) {K : Subgroup G}\n [Fintype K] (hK : card K = p ^ (n-1)) :\n K.Normal :=", "goal": "p n : \nG : Type u_1\ninst✝² : Fintype G\ninst✝¹ : Group G\nhp : p.Prime\nhG : card G = p ^ n\nK : Subgroup G\ninst✝ : Fintype ↥K\nhK : card ↥K = p ^ (n - 1)\n⊢ K.Normal", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2_21", "split": "test", "informal_prefix": "/-- If $\\sigma, \\tau$ are two permutations that disturb no common element and $\\sigma \\tau = e$, prove that $\\sigma = \\tau = e$.-/\n", "formal_statement": "theorem exercise_3_2_21 {α : Type*} [Fintype α] {σ τ: Equiv.Perm α}\n (h1 : ∀ a : α, σ a = a ↔ τ a ≠ a) (h2 : τ ∘ σ = id) :\n σ = 1 ∧ τ = 1 :=", "goal": "α : Type u_1\ninst✝ : Fintype α\nσ τ : Equiv.Perm α\nh1 : ∀ (a : α), σ a = a ↔ τ a ≠ a\nh2 : ⇑τ ∘ ⇑σ = id\n⊢ σ = 1 ∧ τ = 1", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_1_19", "split": "valid", "informal_prefix": "/-- Show that there is an infinite number of solutions to $x^2 = -1$ in the quaternions.-/\n", "formal_statement": "theorem exercise_4_1_19 : Infinite {x : Quaternion | x^2 = -1} :=", "goal": "⊢ Infinite ↑{x | x ^ 2 = -1}", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_1_34", "split": "test", "informal_prefix": "/-- Let $T$ be the group of $2\\times 2$ matrices $A$ with entries in the field $\\mathbb{Z}_2$ such that $\\det A$ is not equal to 0. Prove that $T$ is isomorphic to $S_3$, the symmetric group of degree 3.-/\n", "formal_statement": "def exercise_4_1_34 : Equiv.Perm (Fin 3) ≃* Matrix.GeneralLinearGroup (Fin 2) (ZMod 2) :=", "goal": "⊢ Equiv.Perm (Fin 3) ≃* GL (Fin 2) (ZMod 2)", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_2_5", "split": "valid", "informal_prefix": "/-- Let $R$ be a ring in which $x^3 = x$ for every $x \\in R$. Prove that $R$ is commutative.-/\n", "formal_statement": "def exercise_4_2_5 {R : Type*} [Ring R]\n (h : ∀ x : R, x ^ 3 = x) : CommRing R :=", "goal": "R : Type u_1\ninst✝ : Ring R\nh : ∀ (x : R), x ^ 3 = x\n⊢ CommRing R", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_2_6", "split": "test", "informal_prefix": "/-- If $a^2 = 0$ in $R$, show that $ax + xa$ commutes with $a$.-/\n", "formal_statement": "theorem exercise_4_2_6 {R : Type*} [Ring R] (a x : R)\n (h : a ^ 2 = 0) : a * (a * x + x * a) = (x + x * a) * a :=", "goal": "R : Type u_1\ninst✝ : Ring R\na x : R\nh : a ^ 2 = 0\n⊢ a * (a * x + x * a) = (x + x * a) * a", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_2_9", "split": "valid", "informal_prefix": "/-- Let $p$ be an odd prime and let $1 + \\frac{1}{2} + ... + \\frac{1}{p - 1} = \\frac{a}{b}$, where $a, b$ are integers. Show that $p \\mid a$.-/\n", "formal_statement": "theorem exercise_4_2_9 {p : } (hp : Nat.Prime p) (hp1 : Odd p) :\n ∃ (a b : ), (a / b : ) = ∑ i in Finset.range p, 1 / (i + 1) → ↑p a :=", "goal": "p : \nhp : p.Prime\nhp1 : Odd p\n⊢ ∃ a b, ↑a / ↑b = ↑(∑ i ∈ Finset.range p, 1 / (i + 1)) → ↑p a", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_3_1", "split": "test", "informal_prefix": "/-- If $R$ is a commutative ring and $a \\in R$, let $L(a) = \\{x \\in R \\mid xa = 0\\}$. Prove that $L(a)$ is an ideal of $R$.-/\n", "formal_statement": "theorem exercise_4_3_1 {R : Type*} [CommRing R] (a : R) :\n ∃ I : Ideal R, {x : R | x*a=0} = I :=", "goal": "R : Type u_1\ninst✝ : CommRing R\na : R\n⊢ ∃ I, {x | x * a = 0} = ↑I", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_3_25", "split": "valid", "informal_prefix": "/-- Let $R$ be the ring of $2 \\times 2$ matrices over the real numbers; suppose that $I$ is an ideal of $R$. Show that $I = (0)$ or $I = R$.-/\n", "formal_statement": "theorem exercise_4_3_25 (I : Ideal (Matrix (Fin 2) (Fin 2) )) :\n I = ⊥ I = :=", "goal": "I : Ideal (Matrix (Fin 2) (Fin 2) )\n⊢ I = ⊥ I = ", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4_9", "split": "test", "informal_prefix": "/-- Show that $(p - 1)/2$ of the numbers $1, 2, \\ldots, p - 1$ are quadratic residues and $(p - 1)/2$ are quadratic nonresidues $\\mod p$.-/\n", "formal_statement": "theorem exercise_4_4_9 (p : ) (hp : Nat.Prime p) :\n (∃ S : Finset (ZMod p), S.card = (p-1)/2 ∧ ∃ x : ZMod p, x^2 = p) ∧\n (∃ S : Finset (ZMod p), S.card = (p-1)/2 ∧ ¬ ∃ x : ZMod p, x^2 = p) :=", "goal": "p : \nhp : p.Prime\n⊢ (∃ S, S.card = (p - 1) / 2 ∧ ∃ x, x ^ 2 = ↑p) ∧ ∃ S, S.card = (p - 1) / 2 ∧ ¬∃ x, x ^ 2 = ↑p", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_16", "split": "valid", "informal_prefix": "/-- Let $F = \\mathbb{Z}_p$ be the field of integers $\\mod p$, where $p$ is a prime, and let $q(x) \\in F[x]$ be irreducible of degree $n$. Show that $F[x]/(q(x))$ is a field having at exactly $p^n$ elements.-/\n", "formal_statement": "theorem exercise_4_5_16 {p n: } (hp : Nat.Prime p)\n {q : Polynomial (ZMod p)} (hq : Irreducible q) (hn : q.degree = n) :\n ∃ is_fin : Fintype $ Polynomial (ZMod p) span ({q} : Set (Polynomial $ ZMod p)),\n @card (Polynomial (ZMod p) span {q}) is_fin = p ^ n ∧\n IsField (Polynomial $ ZMod p) :=", "goal": "p n : \nhp : p.Prime\nq : (ZMod p)[X]\nhq : Irreducible q\nhn : q.degree = ↑n\n⊢ ∃ is_fin, card ((ZMod p)[X] span {q}) = p ^ n ∧ IsField (ZMod p)[X]", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_23", "split": "test", "informal_prefix": "/-- Let $F = \\mathbb{Z}_7$ and let $p(x) = x^3 - 2$ and $q(x) = x^3 + 2$ be in $F[x]$. Show that $p(x)$ and $q(x)$ are irreducible in $F[x]$ and that the fields $F[x]/(p(x))$ and $F[x]/(q(x))$ are isomorphic.-/\n", "formal_statement": "theorem exercise_4_5_23 {p q: Polynomial (ZMod 7)}\n (hp : p = X^3 - 2) (hq : q = X^3 + 2) :\n Irreducible p ∧ Irreducible q ∧\n (Nonempty $ Polynomial (ZMod 7) span ({p} : Set $ Polynomial $ ZMod 7) ≃+*\n Polynomial (ZMod 7) span ({q} : Set $ Polynomial $ ZMod 7)) :=", "goal": "p q : (ZMod 7)[X]\nhp : p = X ^ 3 - 2\nhq : q = X ^ 3 + 2\n⊢ Irreducible p ∧ Irreducible q ∧ Nonempty ((ZMod 7)[X] span {p} ≃+* (ZMod 7)[X] span {q})", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_25", "split": "valid", "informal_prefix": "/-- If $p$ is a prime, show that $q(x) = 1 + x + x^2 + \\cdots x^{p - 1}$ is irreducible in $Q[x]$.-/\n", "formal_statement": "theorem exercise_4_5_25 {p : } (hp : Nat.Prime p) :\n Irreducible (∑ i : Finset.range p, X ^ p : Polynomial ) :=", "goal": "p : \nhp : p.Prime\n⊢ Irreducible (∑ i : { x // x ∈ Finset.range p }, X ^ p)", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_6_2", "split": "test", "informal_prefix": "/-- Prove that $f(x) = x^3 + 3x + 2$ is irreducible in $Q[x]$.-/\n", "formal_statement": "theorem exercise_4_6_2 : Irreducible (X^3 + 3*X + 2 : Polynomial ) :=", "goal": "⊢ Irreducible (X ^ 3 + 3 * X + 2)", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_6_3", "split": "valid", "informal_prefix": "/-- Show that there is an infinite number of integers a such that $f(x) = x^7 + 15x^2 - 30x + a$ is irreducible in $Q[x]$.-/\n", "formal_statement": "theorem exercise_4_6_3 :\n Infinite {a : | Irreducible (X^7 + 15*X^2 - 30*X + (a : Polynomial ) : Polynomial )} :=", "goal": "⊢ Infinite ↑{a | Irreducible (X ^ 7 + 15 * X ^ 2 - 30 * X + ↑a)}", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_1_8", "split": "test", "informal_prefix": "/-- If $F$ is a field of characteristic $p \\neq 0$, show that $(a + b)^m = a^m + b^m$, where $m = p^n$, for all $a, b \\in F$ and any positive integer $n$.-/\n", "formal_statement": "theorem exercise_5_1_8 {p m n: } {F : Type*} [Field F]\n (hp : Nat.Prime p) (hF : CharP F p) (a b : F) (hm : m = p ^ n) :\n (a + b) ^ m = a^m + b^m :=", "goal": "p m n : \nF : Type u_1\ninst✝ : Field F\nhp : p.Prime\nhF : CharP F p\na b : F\nhm : m = p ^ n\n⊢ (a + b) ^ m = a ^ m + b ^ m", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_2_20", "split": "valid", "informal_prefix": "/-- Let $V$ be a vector space over an infinite field $F$. Show that $V$ cannot be the set-theoretic union of a finite number of proper subspaces of $V$.-/\n", "formal_statement": "theorem exercise_5_2_20 {F V ι: Type*} [Infinite F] [Field F]\n [AddCommGroup V] [Module F V] {u : ι → Submodule F V}\n (hu : ∀ i : ι, u i ≠ ) :\n ( i : ι, (u i : Set V)) ≠ :=", "goal": "F : Type u_1\nV : Type u_2\nι : Type u_3\ninst✝³ : Infinite F\ninst✝² : Field F\ninst✝¹ : AddCommGroup V\ninst✝ : Module F V\nu : ι → Submodule F V\nhu : ∀ (i : ι), u i ≠ \n⊢ i, ↑(u i) ≠ ", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_3_7", "split": "test", "informal_prefix": "/-- If $a \\in K$ is such that $a^2$ is algebraic over the subfield $F$ of $K$, show that a is algebraic over $F$.-/\n", "formal_statement": "theorem exercise_5_3_7 {K : Type*} [Field K] {F : Subfield K}\n {a : K} (ha : IsAlgebraic F (a ^ 2)) : IsAlgebraic F a :=", "goal": "K : Type u_1\ninst✝ : Field K\nF : Subfield K\na : K\nha : IsAlgebraic (↥F) (a ^ 2)\n⊢ IsAlgebraic (↥F) a", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_3_10", "split": "valid", "informal_prefix": "/-- Prove that $\\cos 1^{\\circ}$ is algebraic over $\\mathbb{Q}$.-/\n", "formal_statement": "theorem exercise_5_3_10 : IsAlgebraic (cos (Real.pi / 180)) :=", "goal": "⊢ IsAlgebraic (π / 180).cos", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_4_3", "split": "test", "informal_prefix": "/-- If $a \\in C$ is such that $p(a) = 0$, where $p(x) = x^5 + \\sqrt{2}x^3 + \\sqrt{5}x^2 + \\sqrt{7}x + \\sqrt{11}$, show that $a$ is algebraic over $\\mathbb{Q}$ of degree at most 80.-/\n", "formal_statement": "theorem exercise_5_4_3 {a : } {p : }\n (hp : p = λ (x : ) => x^5 + sqrt 2 * x^3 + sqrt 5 * x^2 + sqrt 7 * x + 11)\n (ha : p a = 0) :\n ∃ p : Polynomial , p.degree < 80 ∧ a ∈ p.roots ∧\n ∀ n : p.support, ∃ a b : , p.coeff n = a / b :=", "goal": "a : \np : \nhp : p = fun x => x ^ 5 + ↑√2 * x ^ 3 + ↑√5 * x ^ 2 + ↑√7 * x + 11\nha : p a = 0\n⊢ ∃ p, p.degree < 80 ∧ a ∈ p.roots ∧ ∀ (n : { x // x ∈ p.support }), ∃ a b, p.coeff ↑n = ↑a / ↑b", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_5_2", "split": "valid", "informal_prefix": "/-- Prove that $x^3 - 3x - 1$ is irreducible over $\\mathbb{Q}$.-/\n", "formal_statement": "theorem exercise_5_5_2 : Irreducible (X^3 - 3*X - 1 : Polynomial ) :=", "goal": "⊢ Irreducible (X ^ 3 - 3 * X - 1)", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_6_14", "split": "test", "informal_prefix": "/-- If $F$ is of characteristic $p \\neq 0$, show that all the roots of $x^m - x$, where $m = p^n$, are distinct.-/\n", "formal_statement": "theorem exercise_5_6_14 {p m n: } (hp : Nat.Prime p) {F : Type*}\n [Field F] [CharP F p] (hm : m = p ^ n) :\n card (rootSet (X ^ m - X : Polynomial F) F) = m :=", "goal": "p m n : \nhp : p.Prime\nF : Type u_1\ninst✝¹ : Field F\ninst✝ : CharP F p\nhm : m = p ^ n\n⊢ card ↑((X ^ m - X).rootSet F) = m", "header": "import Mathlib\n\nopen Fintype Set Real Ideal Polynomial\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_12a", "split": "valid", "informal_prefix": "/-- Let $(p_n)$ be a sequence and $f:\\mathbb{N}\\to\\mathbb{N}$. The sequence $(q_k)_{k\\in\\mathbb{N}}$ with $q_k=p_{f(k)}$ is called a rearrangement of $(p_n)$. Show that if $f$ is an injection, the limit of a sequence is unaffected by rearrangement.-/\n", "formal_statement": "theorem exercise_2_12a (f : ) (p : ) (a : )\n (hf : Injective f) (hp : Tendsto p atTop (𝓝 a)) :\n Tendsto (λ n => p (f n)) atTop (𝓝 a) :=", "goal": "f : \np : \na : \nhf : Injective f\nhp : Tendsto p atTop (𝓝 a)\n⊢ Tendsto (fun n => p (f n)) atTop (𝓝 a)", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_26", "split": "test", "informal_prefix": "/-- Prove that a set $U \\subset M$ is open if and only if none of its points are limits of its complement.-/\n", "formal_statement": "theorem exercise_2_26 {M : Type*} [TopologicalSpace M]\n (U : Set M) : IsOpen U ↔ ∀ x ∈ U, ¬ ClusterPt x (𝓟 Uᶜ) :=", "goal": "M : Type u_1\ninst✝ : TopologicalSpace M\nU : Set M\n⊢ IsOpen U ↔ ∀ x ∈ U, ¬ClusterPt x (𝓟 Uᶜ)", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_29", "split": "valid", "informal_prefix": "/-- Let $\\mathcal{T}$ be the collection of open subsets of a metric space $\\mathrm{M}$, and $\\mathcal{K}$ the collection of closed subsets. Show that there is a bijection from $\\mathcal{T}$ onto $\\mathcal{K}$.-/\n", "formal_statement": "theorem exercise_2_29 (M : Type*) [MetricSpace M]\n (O C : Set (Set M))\n (hO : O = {s | IsOpen s})\n (hC : C = {s | IsClosed s}) :\n ∃ f : O → C, Bijective f :=", "goal": "M : Type u_1\ninst✝ : MetricSpace M\nO C : Set (Set M)\nhO : O = {s | IsOpen s}\nhC : C = {s | IsClosed s}\n⊢ ∃ f, Bijective f", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_32a", "split": "test", "informal_prefix": "/-- Show that every subset of $\\mathbb{N}$ is clopen.-/\n", "formal_statement": "theorem exercise_2_32a (A : Set ) : IsClopen A :=", "goal": "A : Set \n⊢ IsClopen A", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_41", "split": "valid", "informal_prefix": "/-- Let $\\|\\cdot\\|$ be any norm on $\\mathbb{R}^{m}$ and let $B=\\left\\{x \\in \\mathbb{R}^{m}:\\|x\\| \\leq 1\\right\\}$. Prove that $B$ is compact.-/\n", "formal_statement": "theorem exercise_2_41 (m : ) {X : Type*} [NormedSpace ((Fin m) → )] :\n IsCompact (Metric.closedBall 0 1) :=", "goal": "m : \nX : Type u_1\ninst✝ : NormedSpace (Fin m → )\n⊢ IsCompact (Metric.closedBall 0 1)", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_46", "split": "test", "informal_prefix": "/-- Assume that $A, B$ are compact, disjoint, nonempty subsets of $M$. Prove that there are $a_0 \\in A$ and $b_0 \\in B$ such that for all $a \\in A$ and $b \\in B$ we have $d(a_0, b_0) \\leq d(a, b)$.-/\n", "formal_statement": "theorem exercise_2_46 {M : Type*} [MetricSpace M]\n {A B : Set M} (hA : IsCompact A) (hB : IsCompact B)\n (hAB : Disjoint A B) (hA₀ : A ≠ ∅) (hB₀ : B ≠ ∅) :\n ∃ a₀ b₀, a₀ ∈ A ∧ b₀ ∈ B ∧ ∀ (a : M) (b : M),\n a ∈ A → b ∈ B → dist a₀ b₀ ≤ dist a b :=", "goal": "M : Type u_1\ninst✝ : MetricSpace M\nA B : Set M\nhA : IsCompact A\nhB : IsCompact B\nhAB : Disjoint A B\nhA₀ : A ≠ ∅\nhB₀ : B ≠ ∅\n⊢ ∃ a₀ b₀, a₀ ∈ A ∧ b₀ ∈ B ∧ ∀ (a b : M), a ∈ A → b ∈ B → dist a₀ b₀ ≤ dist a b", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_57", "split": "valid", "informal_prefix": "/-- Show that if $S$ is connected, it is not true in general that its interior is connected.-/\n", "formal_statement": "theorem exercise_2_57 {X : Type*} [TopologicalSpace X]\n : ∃ (S : Set X), IsConnected S ∧ ¬ IsConnected (interior S) :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\n⊢ ∃ S, IsConnected S ∧ ¬IsConnected (interior S)", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_92", "split": "test", "informal_prefix": "/-- Give a direct proof that the nested decreasing intersection of nonempty covering compact sets is nonempty.-/\n", "formal_statement": "theorem exercise_2_92 {α : Type*} [TopologicalSpace α]\n {s : → Set α}\n (hs : ∀ i, IsCompact (s i))\n (hs : ∀ i, (s i).Nonempty)\n (hs : ∀ i, (s i) ⊃ (s (i + 1))) :\n (⋂ i, s i).Nonempty :=", "goal": "α : Type u_1\ninst✝ : TopologicalSpace α\ns : → Set α\nhs✝¹ : ∀ (i : ), IsCompact (s i)\nhs✝ : ∀ (i : ), (s i).Nonempty\nhs : ∀ (i : ), s i ⊃ s (i + 1)\n⊢ (⋂ i, s i).Nonempty", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_126", "split": "valid", "informal_prefix": "/-- Suppose that $E$ is an uncountable subset of $\\mathbb{R}$. Prove that there exists a point $p \\in \\mathbb{R}$ at which $E$ condenses.-/\n", "formal_statement": "theorem exercise_2_126 {E : Set }\n (hE : ¬ Set.Countable E) : ∃ (p : ), ClusterPt p (𝓟 E) :=", "goal": "E : Set \nhE : ¬E.Countable\n⊢ ∃ p, ClusterPt p (𝓟 E)", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_3_1", "split": "test", "informal_prefix": "/-- Assume that $f \\colon \\mathbb{R} \\rightarrow \\mathbb{R}$ satisfies $|f(t)-f(x)| \\leq|t-x|^{2}$ for all $t, x$. Prove that $f$ is constant.-/\n", "formal_statement": "theorem exercise_3_1 {f : }\n (hf : ∀ x y, |f x - f y| ≤ |x - y| ^ 2) :\n ∃ c, f = λ x => c :=", "goal": "f : \nhf : ∀ (x y : ), |f x - f y| ≤ |x - y| ^ 2\n⊢ ∃ c, f = fun x => c", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_3_4", "split": "valid", "informal_prefix": "/-- Prove that $\\sqrt{n+1}-\\sqrt{n} \\rightarrow 0$ as $n \\rightarrow \\infty$.-/\n", "formal_statement": "theorem exercise_3_4 (n : ) :\n Tendsto (λ n => (sqrt (n + 1) - sqrt n)) atTop (𝓝 0) :=", "goal": "n : \n⊢ Tendsto (fun n => √(n + 1) - √n) atTop (𝓝 0)", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_3_63a", "split": "test", "informal_prefix": "/-- Prove that $\\sum 1/k(\\log(k))^p$ converges when $p > 1$.-/\n", "formal_statement": "theorem exercise_3_63a (p : ) (f : ) (hp : p > 1)\n (h : f = λ (k : ) => (1 : ) / (k * (log k) ^ p)) :\n ∃ l, Tendsto f atTop (𝓝 l) :=", "goal": "p : \nf : \nhp : p > 1\nh : f = fun k => 1 / (↑k * (↑k).log ^ p)\n⊢ ∃ l, Tendsto f atTop (𝓝 l)", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_3_63b", "split": "valid", "informal_prefix": "/-- Prove that $\\sum 1/k(\\log(k))^p$ diverges when $p \\leq 1$.-/\n", "formal_statement": "theorem exercise_3_63b (p : ) (f : ) (hp : p ≤ 1)\n (h : f = λ (k : ) => (1 : ) / (k * (log k) ^ p)) :\n ¬ ∃ l, Tendsto f atTop (𝓝 l) :=", "goal": "p : \nf : \nhp : p ≤ 1\nh : f = fun k => 1 / (↑k * (↑k).log ^ p)\n⊢ ¬∃ l, Tendsto f atTop (𝓝 l)", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_4_15a", "split": "test", "informal_prefix": "/-- A continuous, strictly increasing function $\\mu \\colon (0, \\infty) \\rightarrow (0, \\infty)$ is a modulus of continuity if $\\mu(s) \\rightarrow 0$ as $s \\rightarrow 0$. A function $f \\colon [a, b] \\rightarrow \\mathbb{R}$ has modulus of continuity $\\mu$ if $|f(s) - f(t)| \\leq \\mu(|s - t|)$ for all $s, t \\in [a, b]$. Prove that a function is uniformly continuous if and only if it has a modulus of continuity.-/\n", "formal_statement": "theorem exercise_4_15a {α : Type*}\n (a b : ) (F : Set ()) :\n (∀ x : , ∀ ε > 0, ∃ U ∈ (𝓝 x),\n (∀ y z : U, ∀ f : , f ∈ F → (dist (f y) (f z) < ε)))\n ↔\n ∃ (μ : ), ∀ (x : ), (0 : ) ≤ μ x ∧ Tendsto μ (𝓝 0) (𝓝 0) ∧\n (∀ (s t : ) (f : ), f ∈ F → |(f s) - (f t)| ≤ μ (|s - t|)) :=", "goal": "α : Type u_1\na b : \nF : Set ()\n⊢ (∀ (x ε : ), ε > 0 → ∃ U ∈ 𝓝 x, ∀ (y z : ↑U), ∀ f ∈ F, dist (f ↑y) (f ↑z) < ε) ↔\n ∃ μ, ∀ (x : ), 0 ≤ μ x ∧ Tendsto μ (𝓝 0) (𝓝 0) ∧ ∀ (s t : ), ∀ f ∈ F, |f s - f t| ≤ μ |s - t|", "header": "import Mathlib\n\nopen Filter Real Function\nopen scoped Topology\n\n"}
{"name": "exercise_2_2_9", "split": "valid", "informal_prefix": "/-- Let $H$ be the subgroup generated by two elements $a, b$ of a group $G$. Prove that if $a b=b a$, then $H$ is an abelian group.-/\n", "formal_statement": "theorem exercise_2_2_9 {G : Type} [Group G] {a b : G} (h : a * b = b * a) :\n ∀ x y : closure {x| x = a x = b}, x * y = y * x :=", "goal": "G : Type\ninst✝ : Group G\na b : G\nh : a * b = b * a\n⊢ ∀ (x y : ↥(Subgroup.closure {x | x = a x = b})), x * y = y * x", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_3_2", "split": "test", "informal_prefix": "/-- Prove that the products $a b$ and $b a$ are conjugate elements in a group.-/\n", "formal_statement": "theorem exercise_2_3_2 {G : Type*} [Group G] (a b : G) :\n ∃ g : G, b* a = g * a * b * g⁻¹ :=", "goal": "G : Type u_1\ninst✝ : Group G\na b : G\n⊢ ∃ g, b * a = g * a * b * g⁻¹", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_4_19", "split": "valid", "informal_prefix": "/-- Prove that if a group contains exactly one element of order 2 , then that element is in the center of the group.-/\n", "formal_statement": "theorem exercise_2_4_19 {G : Type*} [Group G] {x : G}\n (hx : orderOf x = 2) (hx1 : ∀ y, orderOf y = 2 → y = x) :\n x ∈ center G :=", "goal": "G : Type u_1\ninst✝ : Group G\nx : G\nhx : orderOf x = 2\nhx1 : ∀ (y : G), orderOf y = 2 → y = x\n⊢ x ∈ center G", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_8_6", "split": "test", "informal_prefix": "/-- Prove that the center of the product of two groups is the product of their centers.-/\n", "formal_statement": "noncomputable def exercise_2_8_6 {G H : Type*} [Group G] [Group H] :\n center (G × H) ≃* (center G) × (center H) :=", "goal": "G : Type u_1\nH : Type u_2\ninst✝¹ : Group G\ninst✝ : Group H\n⊢ ↥(center (G × H)) ≃* ↥(center G) × ↥(center H)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n--center of (G × H) equivalent, preserves multiplication with (center G) × (center H)\n"}
{"name": "exercise_2_11_3", "split": "valid", "informal_prefix": "/-- Prove that a group of even order contains an element of order $2 .$-/\n", "formal_statement": "theorem exercise_2_11_3 {G : Type*} [Group G] [Fintype G](hG : Even (card G)) :\n ∃ x : G, orderOf x = 2 :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : Even (card G)\n⊢ ∃ x, orderOf x = 2", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2_7", "split": "test", "informal_prefix": "/-- Prove that every homomorphism of fields is injective.-/\n", "formal_statement": "theorem exercise_3_2_7 {F : Type*} [Field F] {G : Type*} [Field G]\n (φ : F →+* G) : Injective φ :=", "goal": "F : Type u_1\ninst✝¹ : Field F\nG : Type u_2\ninst✝ : Field G\nφ : F →+* G\n⊢ Injective ⇑φ", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\nopen RingHom\n"}
{"name": "exercise_3_5_6", "split": "valid", "informal_prefix": "/-- Let $V$ be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of $V$ is finite or countably infinite.-/\n", "formal_statement": "theorem exercise_3_5_6 {K V : Type*} [Field K] [AddCommGroup V]\n [Module K V] {S : Set V} (hS : Set.Countable S)\n (hS1 : span K S = ) {ι : Type*} (R : ι → V)\n (hR : LinearIndependent K R) : Countable ι :=", "goal": "K : Type u_1\nV : Type u_2\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nS : Set V\nhS : S.Countable\nhS1 : Submodule.span K S = \nι : Type u_3\nR : ι → V\nhR : LinearIndependent K R\n⊢ Countable ι", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_7_2", "split": "test", "informal_prefix": "/-- Let $V$ be a vector space over an infinite field $F$. Prove that $V$ is not the union of finitely many proper subspaces.-/\n", "formal_statement": "theorem exercise_3_7_2 {K V : Type*} [Field K] [AddCommGroup V]\n [Module K V] {ι : Type*} [Fintype ι] (γ : ι → Submodule K V)\n (h : ∀ i : ι, γ i ≠ ) :\n (⋂ (i : ι), (γ i : Set V)) ≠ :=", "goal": "K : Type u_1\nV : Type u_2\ninst✝³ : Field K\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\nι : Type u_3\ninst✝ : Fintype ι\nγ : ι → Submodule K V\nh : ∀ (i : ι), γ i ≠ \n⊢ ⋂ i, ↑(γ i) ≠ ", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_1_14", "split": "valid", "informal_prefix": "/-- Let $Z$ be the center of a group $G$. Prove that if $G / Z$ is a cyclic group, then $G$ is abelian and hence $G=Z$.-/\n", "formal_statement": "theorem exercise_6_1_14 (G : Type*) [Group G]\n (hG : IsCyclic $ G (center G)) :\n center G = :=", "goal": "G : Type u_1\ninst✝ : Group G\nhG : IsCyclic (G center G)\n⊢ center G = ", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_4_2", "split": "test", "informal_prefix": "/-- Prove that no group of order $p q$, where $p$ and $q$ are prime, is simple.-/\n", "formal_statement": "theorem exercise_6_4_2 {G : Type*} [Group G] [Fintype G] {p q : }\n (hp : Prime p) (hq : Prime q) (hG : card G = p*q) :\n IsSimpleGroup G → false :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\np q : \nhp : Prime p\nhq : Prime q\nhG : card G = p * q\n⊢ IsSimpleGroup G → false = true", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_4_3", "split": "valid", "informal_prefix": "/-- Prove that no group of order $p^2 q$, where $p$ and $q$ are prime, is simple.-/\n", "formal_statement": "theorem exercise_6_4_3 {G : Type*} [Group G] [Fintype G] {p q : }\n (hp : Prime p) (hq : Prime q) (hG : card G = p^2 *q) :\n IsSimpleGroup G → false :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\np q : \nhp : Prime p\nhq : Prime q\nhG : card G = p ^ 2 * q\n⊢ IsSimpleGroup G → false = true", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_4_12", "split": "test", "informal_prefix": "/-- Prove that no group of order 224 is simple.-/\n", "formal_statement": "theorem exercise_6_4_12 {G : Type*} [Group G] [Fintype G]\n (hG : card G = 224) :\n IsSimpleGroup G → false :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 224\n⊢ IsSimpleGroup G → false = true", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_8_1", "split": "valid", "informal_prefix": "/-- Prove that two elements $a, b$ of a group generate the same subgroup as $b a b^2, b a b^3$.-/\n", "formal_statement": "theorem exercise_6_8_1 {G : Type*} [Group G]\n (a b : G) : closure ({a, b} : Set G) = Subgroup.closure {b*a*b^2, b*a*b^3} :=", "goal": "G : Type u_1\ninst✝ : Group G\na b : G\n⊢ Subgroup.closure {a, b} = Subgroup.closure {b * a * b ^ 2, b * a * b ^ 3}", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_10_1_13", "split": "test", "informal_prefix": "/-- An element $x$ of a ring $R$ is called nilpotent if some power of $x$ is zero. Prove that if $x$ is nilpotent, then $1+x$ is a unit in $R$.-/\n", "formal_statement": "theorem exercise_10_1_13 {R : Type*} [Ring R] {x : R}\n (hx : IsNilpotent x) : IsUnit (1 + x) :=", "goal": "R : Type u_1\ninst✝ : Ring R\nx : R\nhx : IsNilpotent x\n⊢ IsUnit (1 + x)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_10_2_4", "split": "valid", "informal_prefix": "/-- Prove that in the ring $\\mathbb{Z}[x],(2) \\cap(x)=(2 x)$.-/\n", "formal_statement": "theorem exercise_10_2_4 :\n span ({2} : Set $ Polynomial ) ⊓ (span {X}) =\n span ({2 * X} : Set $ Polynomial ) :=", "goal": "⊢ Ideal.span {2} ⊓ Ideal.span {X} = Ideal.span {2 * X}", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_10_6_7", "split": "test", "informal_prefix": "/-- Prove that every nonzero ideal in the ring of Gauss integers contains a nonzero integer.-/\n", "formal_statement": "theorem exercise_10_6_7 {I : Ideal GaussianInt}\n (hI : I ≠ ⊥) : ∃ (z : I), z ≠ 0 ∧ (z : GaussianInt).im = 0 :=", "goal": "I : Ideal GaussianInt\nhI : I ≠ ⊥\n⊢ ∃ z, z ≠ 0 ∧ (↑z).im = 0", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_10_4_6", "split": "valid", "informal_prefix": "/-- Let $I, J$ be ideals in a ring $R$. Prove that the residue of any element of $I \\cap J$ in $R / I J$ is nilpotent.-/\n", "formal_statement": "theorem exercise_10_4_6 {R : Type*} [CommRing R]\n [NoZeroDivisors R] (I J : Ideal R) (x : ↑(I ⊓ J)) :\n IsNilpotent ((Ideal.Quotient.mk (I*J)) x) :=", "goal": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : NoZeroDivisors R\nI J : Ideal R\nx : ↥(I ⊓ J)\n⊢ IsNilpotent ((Ideal.Quotient.mk (I * J)) ↑x)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_10_4_7a", "split": "test", "informal_prefix": "/-- Let $I, J$ be ideals of a ring $R$ such that $I+J=R$. Prove that $I J=I \\cap J$.-/\n", "formal_statement": "theorem exercise_10_4_7a {R : Type*} [CommRing R] [NoZeroDivisors R]\n (I J : Ideal R) (hIJ : I + J = ) : I * J = I ⊓ J :=", "goal": "R : Type u_1\ninst✝¹ : CommRing R\ninst✝ : NoZeroDivisors R\nI J : Ideal R\nhIJ : I + J = \n⊢ I * J = I ⊓ J", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_10_7_10", "split": "valid", "informal_prefix": "/-- Let $R$ be a ring, with $M$ an ideal of $R$. Suppose that every element of $R$ which is not in $M$ is a unit of $R$. Prove that $M$ is a maximal ideal and that moreover it is the only maximal ideal of $R$.-/\n", "formal_statement": "theorem exercise_10_7_10 {R : Type*} [Ring R]\n (M : Ideal R) (hM : ∀ (x : R), x ∉ M → IsUnit x)\n (hProper : ∃ x : R, x ∉ M) :\n IsMaximal M ∧ ∀ (N : Ideal R), IsMaximal N → N = M :=", "goal": "R : Type u_1\ninst✝ : Ring R\nM : Ideal R\nhM : ∀ x ∉ M, IsUnit x\nhProper : ∃ x, x ∉ M\n⊢ M.IsMaximal ∧ ∀ (N : Ideal R), N.IsMaximal → N = M", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_2_13", "split": "test", "informal_prefix": "/-- If $a, b$ are integers and if $a$ divides $b$ in the ring of Gauss integers, then $a$ divides $b$ in $\\mathbb{Z}$.-/\n", "formal_statement": "theorem exercise_11_2_13 (a b : ) :\n (ofInt a : GaussianInt) ofInt b → a b :=", "goal": "a b : \n⊢ ofInt a ofInt b → a b", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_4_1b", "split": "valid", "informal_prefix": "/-- Prove that $x^3 + 6x + 12$ is irreducible in $\\mathbb{Q}$.-/\n", "formal_statement": "theorem exercise_11_4_1b {F : Type*} [Field F] [Fintype F] (hF : card F = 2) :\n Irreducible (12 + 6 * X + X ^ 3 : Polynomial F) :=", "goal": "F : Type u_1\ninst✝¹ : Field F\ninst✝ : Fintype F\nhF : card F = 2\n⊢ Irreducible (12 + 6 * X + X ^ 3)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_4_6a", "split": "test", "informal_prefix": "/-- Prove that $x^2+x+1$ is irreducible in the field $\\mathbb{F}_2$.-/\n", "formal_statement": "theorem exercise_11_4_6a {F : Type*} [Field F] [Fintype F] (hF : card F = 7) :\n Irreducible (X ^ 2 + 1 : Polynomial F) :=", "goal": "F : Type u_1\ninst✝¹ : Field F\ninst✝ : Fintype F\nhF : card F = 7\n⊢ Irreducible (X ^ 2 + 1)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_4_6b", "split": "valid", "informal_prefix": "/-- Prove that $x^2+1$ is irreducible in $\\mathbb{F}_7$-/\n", "formal_statement": "theorem exercise_11_4_6b {F : Type*} [Field F] [Fintype F] (hF : card F = 31) :\n Irreducible (X ^ 3 - 9 : Polynomial F) :=", "goal": "F : Type u_1\ninst✝¹ : Field F\ninst✝ : Fintype F\nhF : card F = 31\n⊢ Irreducible (X ^ 3 - 9)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_4_6c", "split": "test", "informal_prefix": "/-- Prove that $x^3 - 9$ is irreducible in $\\mathbb{F}_{31}$.-/\n", "formal_statement": "theorem exercise_11_4_6c : Irreducible (X^3 - 9 : Polynomial (ZMod 31)) :=", "goal": "⊢ Irreducible (X ^ 3 - 9)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_4_8", "split": "valid", "informal_prefix": "/-- Let $p$ be a prime integer. Prove that the polynomial $x^n-p$ is irreducible in $\\mathbb{Q}[x]$.-/\n", "formal_statement": "theorem exercise_11_4_8 (p : ) (hp : Prime p) (n : ) :\n -- p ∈ can be written as p ∈ [X]\n Irreducible (X ^ n - (p : Polynomial ) : Polynomial ) :=", "goal": "p : \nhp : Prime p\nn : \n⊢ Irreducible (X ^ n - ↑p)", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_13_3", "split": "test", "informal_prefix": "/-- Prove that there are infinitely many primes congruent to $-1$ (modulo $4$).-/\n", "formal_statement": "theorem exercise_11_13_3 (N : ):\n ∃ p ≥ N, Nat.Prime p ∧ p + 1 ≡ 0 [MOD 4] :=", "goal": "N : \n⊢ ∃ p ≥ N, p.Prime ∧ p + 1 ≡ 0 [MOD 4]", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_13_4_10", "split": "valid", "informal_prefix": "/-- Prove that if a prime integer $p$ has the form $2^r+1$, then it actually has the form $2^{2^k}+1$.-/\n", "formal_statement": "theorem exercise_13_4_10\n {p : } {hp : Nat.Prime p} (h : ∃ r : , p = 2 ^ r + 1) :\n ∃ (k : ), p = 2 ^ (2 ^ k) + 1 :=", "goal": "p : \nhp : p.Prime\nh : ∃ r, p = 2 ^ r + 1\n⊢ ∃ k, p = 2 ^ 2 ^ k + 1", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_13_6_10", "split": "test", "informal_prefix": "/-- Let $K$ be a finite field. Prove that the product of the nonzero elements of $K$ is $-1$.-/\n", "formal_statement": "theorem exercise_13_6_10 {K : Type*} [Field K] [Fintype Kˣ] :\n (∏ x : Kˣ, x) = -1 :=", "goal": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : Fintype Kˣ\n⊢ ∏ x : Kˣ, x = -1", "header": "import Mathlib\n\nopen Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_2", "split": "test", "informal_prefix": "/-- Show that $\\frac{-1 + \\sqrt{3}i}{2}$ is a cube root of 1 (meaning that its cube equals 1).-/\n", "formal_statement": "theorem exercise_1_2 :\n (⟨-1/2, Real.sqrt 3 / 2⟩ : ) ^ 3 = -1 :=", "goal": "⊢ { re := -1 / 2, im := √3 / 2 } ^ 3 = -1", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_3", "split": "valid", "informal_prefix": "/-- Prove that $-(-v) = v$ for every $v \\in V$.-/\n", "formal_statement": "theorem exercise_1_3 {F V : Type*} [AddCommGroup V] [Field F]\n [Module F V] {v : V} : -(-v) = v :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nv : V\n⊢ - -v = v", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_4", "split": "test", "informal_prefix": "/-- Prove that if $a \\in \\mathbf{F}$, $v \\in V$, and $av = 0$, then $a = 0$ or $v = 0$.-/\n", "formal_statement": "theorem exercise_1_4 {F V : Type*} [AddCommGroup V] [Field F]\n [Module F V] (v : V) (a : F): a • v = 0 ↔ a = 0 v = 0 :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nv : V\na : F\n⊢ a • v = 0 ↔ a = 0 v = 0", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_6", "split": "valid", "informal_prefix": "/-- Give an example of a nonempty subset $U$ of $\\mathbf{R}^2$ such that $U$ is closed under addition and under taking additive inverses (meaning $-u \\in U$ whenever $u \\in U$), but $U$ is not a subspace of $\\mathbf{R}^2$.-/\n", "formal_statement": "theorem exercise_1_6 : ∃ U : Set ( × ),\n (U ≠ ∅) ∧\n (∀ (u v : × ), u ∈ U ∧ v ∈ U → u + v ∈ U) ∧\n (∀ (u : × ), u ∈ U → -u ∈ U) ∧\n (∀ U' : Submodule ( × ), U ≠ ↑U') :=", "goal": "⊢ ∃ U, U ≠ ∅ ∧ (∀ (u v : × ), u ∈ U ∧ v ∈ U → u + v ∈ U) ∧ (∀ u ∈ U, -u ∈ U) ∧ ∀ (U' : Submodule ( × )), U ≠ ↑U'", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_7", "split": "test", "informal_prefix": "/-- Give an example of a nonempty subset $U$ of $\\mathbf{R}^2$ such that $U$ is closed under scalar multiplication, but $U$ is not a subspace of $\\mathbf{R}^2$.-/\n", "formal_statement": "theorem exercise_1_7 : ∃ U : Set ( × ),\n (U ≠ ∅) ∧\n (∀ (c : ) (u : × ), u ∈ U → c • u ∈ U) ∧\n (∀ U' : Submodule ( × ), U ≠ ↑U') :=", "goal": "⊢ ∃ U, U ≠ ∅ ∧ (∀ (c : ), ∀ u ∈ U, c • u ∈ U) ∧ ∀ (U' : Submodule ( × )), U ≠ ↑U'", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_8", "split": "valid", "informal_prefix": "/-- Prove that the intersection of any collection of subspaces of $V$ is a subspace of $V$.-/\n", "formal_statement": "theorem exercise_1_8 {F V : Type*} [AddCommGroup V] [Field F]\n [Module F V] {ι : Type*} (u : ι → Submodule F V) :\n ∃ U : Submodule F V, (⋂ (i : ι), (u i).carrier) = ↑U :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nι : Type u_3\nu : ι → Submodule F V\n⊢ ∃ U, ⋂ i, (u i).carrier = ↑U", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_9", "split": "test", "informal_prefix": "/-- Prove that the union of two subspaces of $V$ is a subspace of $V$ if and only if one of the subspaces is contained in the other.-/\n", "formal_statement": "theorem exercise_1_9 {F V : Type*} [AddCommGroup V] [Field F]\n [Module F V] (U W : Submodule F V):\n ∃ U' : Submodule F V, (U'.carrier = ↑U ∩ ↑W ↔ (U ≤ W W ≤ U)) :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nU W : Submodule F V\n⊢ ∃ U', U'.carrier = ↑U ∩ ↑W ↔ U ≤ W W ≤ U", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_1", "split": "valid", "informal_prefix": "/-- Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if $\\operatorname{dim} V=1$ and $T \\in \\mathcal{L}(V, V)$, then there exists $a \\in \\mathbf{F}$ such that $T v=a v$ for all $v \\in V$.-/\n", "formal_statement": "theorem exercise_3_1 {F V : Type*}\n [AddCommGroup V] [Field F] [Module F V] [FiniteDimensional F V]\n (T : V →ₗ[F] V) (hT : finrank F V = 1) :\n ∃ c : F, ∀ v : V, T v = c • v :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝³ : AddCommGroup V\ninst✝² : Field F\ninst✝¹ : Module F V\ninst✝ : FiniteDimensional F V\nT : V →ₗ[F] V\nhT : finrank F V = 1\n⊢ ∃ c, ∀ (v : V), T v = c • v", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_8", "split": "test", "informal_prefix": "/-- Suppose that $V$ is finite dimensional and that $T \\in \\mathcal{L}(V, W)$. Prove that there exists a subspace $U$ of $V$ such that $U \\cap \\operatorname{null} T=\\{0\\}$ and range $T=\\{T u: u \\in U\\}$.-/\n", "formal_statement": "theorem exercise_3_8 {F V W : Type*} [AddCommGroup V]\n [AddCommGroup W] [Field F] [Module F V] [Module F W]\n (L : V →ₗ[F] W) :\n ∃ U : Submodule F V, U ⊓ (ker L) = ⊥ ∧\n (range L = range (domRestrict L U)) :=", "goal": "F : Type u_1\nV : Type u_2\nW : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AddCommGroup W\ninst✝² : Field F\ninst✝¹ : Module F V\ninst✝ : Module F W\nL : V →ₗ[F] W\n⊢ ∃ U, U ⊓ ker L = ⊥ ∧ range L = range (L.domRestrict U)", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4", "split": "valid", "informal_prefix": "/-- Suppose $p \\in \\mathcal{P}(\\mathbf{C})$ has degree $m$. Prove that $p$ has $m$ distinct roots if and only if $p$ and its derivative $p^{\\prime}$ have no roots in common.-/\n", "formal_statement": "theorem exercise_4_4 (p : Polynomial ) :\n p.degree = @card (rootSet p ) (rootSetFintype p ) ↔\n Disjoint\n (@card (rootSet (derivative p) ) (rootSetFintype (derivative p) ))\n (@card (rootSet p ) (rootSetFintype p )) :=", "goal": "p : [X]\n⊢ p.degree = ↑(card ↑(p.rootSet )) ↔ Disjoint (card ↑((derivative p).rootSet )) (card ↑(p.rootSet ))", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_1", "split": "test", "informal_prefix": "/-- Suppose $T \\in \\mathcal{L}(V)$. Prove that if $U_{1}, \\ldots, U_{m}$ are subspaces of $V$ invariant under $T$, then $U_{1}+\\cdots+U_{m}$ is invariant under $T$.-/\n", "formal_statement": "theorem exercise_5_1 {F V : Type*} [AddCommGroup V] [Field F]\n [Module F V] {L : V →ₗ[F] V} {n : } (U : Fin n → Submodule F V)\n (hU : ∀ i : Fin n, Submodule.map L (U i) = U i) :\n Submodule.map L (∑ i : Fin n, U i : Submodule F V) =\n (∑ i : Fin n, U i : Submodule F V) :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nL : V →ₗ[F] V\nn : \nU : Fin n → Submodule F V\nhU : ∀ (i : Fin n), Submodule.map L (U i) = U i\n⊢ Submodule.map L (∑ i : Fin n, U i) = ∑ i : Fin n, U i", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_4", "split": "valid", "informal_prefix": "/-- Suppose that $S, T \\in \\mathcal{L}(V)$ are such that $S T=T S$. Prove that $\\operatorname{null} (T-\\lambda I)$ is invariant under $S$ for every $\\lambda \\in \\mathbf{F}$.-/\n", "formal_statement": "theorem exercise_5_4 {F V : Type*} [AddCommGroup V] [Field F]\n [Module F V] (S T : V →ₗ[F] V) (hST : S ∘ T = T ∘ S) (c : F):\n Submodule.map S (ker (T - c • LinearMap.id)) = ker (T - c • LinearMap.id) :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nS T : V →ₗ[F] V\nhST : ⇑S ∘ ⇑T = ⇑T ∘ ⇑S\nc : F\n⊢ Submodule.map S (ker (T - c • LinearMap.id)) = ker (T - c • LinearMap.id)", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_11", "split": "test", "informal_prefix": "/-- Suppose $S, T \\in \\mathcal{L}(V)$. Prove that $S T$ and $T S$ have the same eigenvalues.-/\n", "formal_statement": "theorem exercise_5_11 {F V : Type*} [AddCommGroup V] [Field F]\n [Module F V] (S T : End F V) :\n (S * T).Eigenvalues = (T * S).Eigenvalues :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nS T : End F V\n⊢ (S * T).Eigenvalues = (T * S).Eigenvalues", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_12", "split": "valid", "informal_prefix": "/-- Suppose $T \\in \\mathcal{L}(V)$ is such that every vector in $V$ is an eigenvector of $T$. Prove that $T$ is a scalar multiple of the identity operator.-/\n", "formal_statement": "theorem exercise_5_12 {F V : Type*} [AddCommGroup V] [Field F]\n [Module F V] {S : End F V}\n (hS : ∀ v : V, ∃ c : F, v ∈ eigenspace S c) :\n ∃ c : F, S = c • LinearMap.id :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝² : AddCommGroup V\ninst✝¹ : Field F\ninst✝ : Module F V\nS : End F V\nhS : ∀ (v : V), ∃ c, v ∈ S.eigenspace c\n⊢ ∃ c, S = c • LinearMap.id", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_13", "split": "test", "informal_prefix": "/-- Suppose $T \\in \\mathcal{L}(V)$ is such that every subspace of $V$ with dimension $\\operatorname{dim} V-1$ is invariant under $T$. Prove that $T$ is a scalar multiple of the identity operator.-/\n", "formal_statement": "theorem exercise_5_13 {F V : Type*} [AddCommGroup V] [Field F]\n [Module F V] [FiniteDimensional F V] {T : End F V}\n (hS : ∀ U : Submodule F V, finrank F U = finrank F V - 1 →\n Submodule.map T U = U) : ∃ c : F, T = c • LinearMap.id :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝³ : AddCommGroup V\ninst✝² : Field F\ninst✝¹ : Module F V\ninst✝ : FiniteDimensional F V\nT : End F V\nhS : ∀ (U : Submodule F V), finrank F ↥U = finrank F V - 1 → Submodule.map T U = U\n⊢ ∃ c, T = c • LinearMap.id", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_20", "split": "valid", "informal_prefix": "/-- Suppose that $T \\in \\mathcal{L}(V)$ has $\\operatorname{dim} V$ distinct eigenvalues and that $S \\in \\mathcal{L}(V)$ has the same eigenvectors as $T$ (not necessarily with the same eigenvalues). Prove that $S T=T S$.-/\n", "formal_statement": "theorem exercise_5_20 {F V : Type*} [AddCommGroup V] [Field F]\n [Module F V] [FiniteDimensional F V] {S T : End F V}\n (h1 : card (T.Eigenvalues) = finrank F V)\n (h2 : ∀ v : V, ∃ c : F, v ∈ eigenspace S c ↔ ∃ c : F, v ∈ eigenspace T c) :\n S * T = T * S :=", "goal": "F : Type u_1\nV : Type u_2\ninst✝³ : AddCommGroup V\ninst✝² : Field F\ninst✝¹ : Module F V\ninst✝ : FiniteDimensional F V\nS T : End F V\nh1 : card T.Eigenvalues = finrank F V\nh2 : ∀ (v : V), ∃ c, v ∈ S.eigenspace c ↔ ∃ c, v ∈ T.eigenspace c\n⊢ S * T = T * S", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_24", "split": "test", "informal_prefix": "/-- Suppose $V$ is a real vector space and $T \\in \\mathcal{L}(V)$ has no eigenvalues. Prove that every subspace of $V$ invariant under $T$ has even dimension.-/\n", "formal_statement": "theorem exercise_5_24 {V : Type*} [AddCommGroup V]\n [Module V] [FiniteDimensional V] {T : End V}\n (hT : ∀ c : , eigenspace T c = ⊥) {U : Submodule V}\n (hU : Submodule.map T U = U) : Even (finrank U) :=", "goal": "V : Type u_1\ninst✝² : AddCommGroup V\ninst✝¹ : Module V\ninst✝ : FiniteDimensional V\nT : End V\nhT : ∀ (c : ), T.eigenspace c = ⊥\nU : Submodule V\nhU : Submodule.map T U = U\n⊢ Even (finrank ↥U)", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_2", "split": "valid", "informal_prefix": "/-- Suppose $u, v \\in V$. Prove that $\\langle u, v\\rangle=0$ if and only if $\\|u\\| \\leq\\|u+a v\\|$ for all $a \\in \\mathbf{F}$.-/\n", "formal_statement": "theorem exercise_6_2 {V : Type*} [NormedAddCommGroup V] [Module V]\n[InnerProductSpace V] (u v : V) :\n ⟪u, v⟫_ = 0 ↔ ∀ (a : ), ‖u‖ ≤ ‖u + a • v‖ :=", "goal": "V : Type u_1\ninst✝² : NormedAddCommGroup V\ninst✝¹ : Module V\ninst✝ : InnerProductSpace V\nu v : V\n⊢ ⟪u, v⟫_ = 0 ↔ ∀ (a : ), ‖u‖ ≤ ‖u + a • v‖", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_3", "split": "test", "informal_prefix": "/-- Prove that $\\left(\\sum_{j=1}^{n} a_{j} b_{j}\\right)^{2} \\leq\\left(\\sum_{j=1}^{n} j a_{j}{ }^{2}\\right)\\left(\\sum_{j=1}^{n} \\frac{b_{j}{ }^{2}}{j}\\right)$ for all real numbers $a_{1}, \\ldots, a_{n}$ and $b_{1}, \\ldots, b_{n}$.-/\n", "formal_statement": "theorem exercise_6_3 {n : } (a b : Fin n → ) :\n (∑ i, a i * b i) ^ 2 ≤ (∑ i : Fin n, i * a i ^ 2) * (∑ i, b i ^ 2 / i) :=", "goal": "n : \na b : Fin n → \n⊢ (∑ i : Fin n, a i * b i) ^ 2 ≤ (∑ i : Fin n, ↑↑i * a i ^ 2) * ∑ i : Fin n, b i ^ 2 / ↑↑i", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_7", "split": "valid", "informal_prefix": "/-- Prove that if $V$ is a complex inner-product space, then $\\langle u, v\\rangle=\\frac{\\|u+v\\|^{2}-\\|u-v\\|^{2}+\\|u+i v\\|^{2} i-\\|u-i v\\|^{2} i}{4}$ for all $u, v \\in V$.-/\n", "formal_statement": "theorem exercise_6_7 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace V] (u v : V) :\n ⟪u, v⟫_ = (‖u + v‖^2 - ‖u - v‖^2 + I*‖u + I•v‖^2 - I*‖u-I•v‖^2) / 4 :=", "goal": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace V\nu v : V\n⊢ ⟪u, v⟫_ = (↑‖u + v‖ ^ 2 - ↑‖u - v‖ ^ 2 + I * ↑‖u + I • v‖ ^ 2 - I * ↑‖u - I • v‖ ^ 2) / 4", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_13", "split": "test", "informal_prefix": "/-- Suppose $\\left(e_{1}, \\ldots, e_{m}\\right)$ is an or thonormal list of vectors in $V$. Let $v \\in V$. Prove that $\\|v\\|^{2}=\\left|\\left\\langle v, e_{1}\\right\\rangle\\right|^{2}+\\cdots+\\left|\\left\\langle v, e_{m}\\right\\rangle\\right|^{2}$ if and only if $v \\in \\operatorname{span}\\left(e_{1}, \\ldots, e_{m}\\right)$.-/\n", "formal_statement": "theorem exercise_6_13 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace V] {n : }\n {e : Fin n → V} (he : Orthonormal e) (v : V) :\n ‖v‖^2 = ∑ i : Fin n, ‖⟪v, e i⟫_‖^2 ↔ v ∈ Submodule.span (e '' Set.univ) :=", "goal": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace V\nn : \ne : Fin n → V\nhe : Orthonormal e\nv : V\n⊢ ‖v‖ ^ 2 = ∑ i : Fin n, ‖⟪v, e i⟫_‖ ^ 2 ↔ v ∈ Submodule.span (e '' Set.univ)", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_6_16", "split": "valid", "informal_prefix": "/-- Suppose $U$ is a subspace of $V$. Prove that $U^{\\perp}=\\{0\\}$ if and only if $U=V$-/\n", "formal_statement": "theorem exercise_6_16 {K V : Type*} [RCLike K] [NormedAddCommGroup V] [InnerProductSpace K V]\n {U : Submodule K V} :\n U.orthogonal = ⊥ ↔ U = :=", "goal": "K : Type u_1\nV : Type u_2\ninst✝² : RCLike K\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace K V\nU : Submodule K V\n⊢ Uᗮ = ⊥ ↔ U = ", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_5", "split": "test", "informal_prefix": "/-- Show that if $\\operatorname{dim} V \\geq 2$, then the set of normal operators on $V$ is not a subspace of $\\mathcal{L}(V)$.-/\n", "formal_statement": "theorem exercise_7_5 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace V]\n [FiniteDimensional V] (hV : finrank V ≥ 2) :\n ∀ U : Submodule (End V), U.carrier ≠\n {T | T * adjoint T = adjoint T * T} :=", "goal": "V : Type u_1\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace V\ninst✝ : FiniteDimensional V\nhV : finrank V ≥ 2\n⊢ ∀ (U : Submodule (End V)), U.carrier ≠ {T | T * adjoint T = adjoint T * T}", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_6", "split": "valid", "informal_prefix": "/-- Prove that if $T \\in \\mathcal{L}(V)$ is normal, then $\\operatorname{range} T=\\operatorname{range} T^{*}.$-/\n", "formal_statement": "theorem exercise_7_6 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace V]\n [FiniteDimensional V] (T : End V)\n (hT : T * adjoint T = adjoint T * T) :\n range T = range (adjoint T) :=", "goal": "V : Type u_1\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace V\ninst✝ : FiniteDimensional V\nT : End V\nhT : T * adjoint T = adjoint T * T\n⊢ range T = range (adjoint T)", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_9", "split": "test", "informal_prefix": "/-- Prove that a normal operator on a complex inner-product space is self-adjoint if and only if all its eigenvalues are real.-/\n", "formal_statement": "theorem exercise_7_9 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace V]\n [FiniteDimensional V] (T : End V)\n (hT : T * adjoint T = adjoint T * T) :\n IsSelfAdjoint T ↔ ∀ e : T.Eigenvalues, (e : ).im = 0 :=", "goal": "V : Type u_1\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace V\ninst✝ : FiniteDimensional V\nT : End V\nhT : T * adjoint T = adjoint T * T\n⊢ IsSelfAdjoint T ↔ ∀ (e : T.Eigenvalues), (↑T e).im = 0", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_10", "split": "valid", "informal_prefix": "/-- Suppose $V$ is a complex inner-product space and $T \\in \\mathcal{L}(V)$ is a normal operator such that $T^{9}=T^{8}$. Prove that $T$ is self-adjoint and $T^{2}=T$.-/\n", "formal_statement": "theorem exercise_7_10 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace V]\n [FiniteDimensional V] (T : End V)\n (hT : T * adjoint T = adjoint T * T) (hT1 : T^9 = T^8) :\n IsSelfAdjoint T ∧ T^2 = T :=", "goal": "V : Type u_1\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace V\ninst✝ : FiniteDimensional V\nT : End V\nhT : T * adjoint T = adjoint T * T\nhT1 : T ^ 9 = T ^ 8\n⊢ IsSelfAdjoint T ∧ T ^ 2 = T", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_11", "split": "test", "informal_prefix": "/-- Suppose $V$ is a complex inner-product space. Prove that every normal operator on $V$ has a square root. (An operator $S \\in \\mathcal{L}(V)$ is called a square root of $T \\in \\mathcal{L}(V)$ if $S^{2}=T$.)-/\n", "formal_statement": "theorem exercise_7_11 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace V]\n [FiniteDimensional V] {T : End V} (hT : T*adjoint T = adjoint T*T) :\n ∃ (S : End V), S ^ 2 = T :=", "goal": "V : Type u_1\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace V\ninst✝ : FiniteDimensional V\nT : End V\nhT : T * adjoint T = adjoint T * T\n⊢ ∃ S, S ^ 2 = T", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_14", "split": "valid", "informal_prefix": "/-- Suppose $T \\in \\mathcal{L}(V)$ is self-adjoint, $\\lambda \\in \\mathbf{F}$, and $\\epsilon>0$. Prove that if there exists $v \\in V$ such that $\\|v\\|=1$ and $\\|T v-\\lambda v\\|<\\epsilon,$ then $T$ has an eigenvalue $\\lambda^{\\prime}$ such that $\\left|\\lambda-\\lambda^{\\prime}\\right|<\\epsilon$.-/\n", "formal_statement": "theorem exercise_7_14 {𝕜 V : Type*} [RCLike 𝕜] [NormedAddCommGroup V]\n [InnerProductSpace 𝕜 V] [FiniteDimensional 𝕜 V]\n {T : Module.End 𝕜 V} (hT : IsSelfAdjoint T)\n {l : 𝕜} {ε : } (he : ε > 0) : ∃ v : V, ‖v‖= 1 ∧ (‖T v - l • v‖ < ε →\n (∃ l' : T.Eigenvalues, ‖l - l'‖ < ε)) :=", "goal": "𝕜 : Type u_1\nV : Type u_2\ninst✝³ : RCLike 𝕜\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace 𝕜 V\ninst✝ : FiniteDimensional 𝕜 V\nT : End 𝕜 V\nhT : IsSelfAdjoint T\nl : 𝕜\nε : \nhe : ε > 0\n⊢ ∃ v, ‖v‖ = 1 ∧ (‖T v - l • v‖ < ε → ∃ l', ‖l - ↑T l'‖ < ε)", "header": "import Mathlib\n\nopen Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_2a", "split": "test", "informal_prefix": "/-- Prove the the operation $\\star$ on $\\mathbb{Z}$ defined by $a\\star b=a-b$ is not commutative.-/\n", "formal_statement": "theorem exercise_1_1_2a : ∃ a b : , a - b ≠ b - a :=", "goal": "⊢ ∃ a b, a - b ≠ b - a", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_3", "split": "valid", "informal_prefix": "/-- Prove that the addition of residue classes $\\mathbb{Z}/n\\mathbb{Z}$ is associative.-/\n", "formal_statement": "theorem exercise_1_1_3 (n : ) :\n ∀ (a b c : ), (a+b)+c ≡ a+(b+c) [ZMOD n] :=", "goal": "n : \n⊢ ∀ (a b c : ), a + b + c ≡ a + (b + c) [ZMOD n]", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_4", "split": "test", "informal_prefix": "/-- Prove that the multiplication of residue class $\\mathbb{Z}/n\\mathbb{Z}$ is associative.-/\n", "formal_statement": "theorem exercise_1_1_4 (n : ) :\n ∀ (a b c : ), (a * b) * c ≡ a * (b * c) [ZMOD n] :=", "goal": "n : \n⊢ ∀ (a b c : ), ↑a * ↑b * ↑c ≡ ↑a * (↑b * ↑c) [ZMOD ↑n]", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_5", "split": "valid", "informal_prefix": "/-- Prove that for all $n>1$ that $\\mathbb{Z}/n\\mathbb{Z}$ is not a group under multiplication of residue classes.-/\n", "formal_statement": "theorem exercise_1_1_5 (n : ) (hn : 1 < n) :\n IsEmpty (Group (ZMod n)) :=", "goal": "n : \nhn : 1 < n\n⊢ IsEmpty (Group (ZMod n))", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_15", "split": "test", "informal_prefix": "/-- Prove that $(a_1a_2\\dots a_n)^{-1} = a_n^{-1}a_{n-1}^{-1}\\dots a_1^{-1}$ for all $a_1, a_2, \\dots, a_n\\in G$.-/\n", "formal_statement": "theorem exercise_1_1_15 {G : Type*} [Group G] (as : List G) :\n as.prod⁻¹ = (as.reverse.map (λ x => x⁻¹)).prod :=", "goal": "G : Type u_1\ninst✝ : Group G\nas : List G\n⊢ as.prod⁻¹ = (List.map (fun x => x⁻¹) as.reverse).prod", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_16", "split": "valid", "informal_prefix": "/-- Let $x$ be an element of $G$. Prove that $x^2=1$ if and only if $|x|$ is either $1$ or $2$.-/\n", "formal_statement": "theorem exercise_1_1_16 {G : Type*} [Group G]\n (x : G) (hx : x ^ 2 = 1) :\n orderOf x = 1 orderOf x = 2 :=", "goal": "G : Type u_1\ninst✝ : Group G\nx : G\nhx : x ^ 2 = 1\n⊢ orderOf x = 1 orderOf x = 2", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_17", "split": "test", "informal_prefix": "/-- Let $x$ be an element of $G$. Prove that if $|x|=n$ for some positive integer $n$ then $x^{-1}=x^{n-1}$.-/\n", "formal_statement": "theorem exercise_1_1_17 {G : Type*} [Group G] {x : G} {n : }\n (hxn: orderOf x = n) :\n x⁻¹ = x ^ (n - 1 : ) :=", "goal": "G : Type u_1\ninst✝ : Group G\nx : G\nn : \nhxn : orderOf x = n\n⊢ x⁻¹ = x ^ (↑n - 1)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_18", "split": "valid", "informal_prefix": "/-- Let $x$ and $y$ be elements of $G$. Prove that $xy=yx$ if and only if $y^{-1}xy=x$ if and only if $x^{-1}y^{-1}xy=1$.-/\n", "formal_statement": "theorem exercise_1_1_18 {G : Type*} [Group G]\n (x y : G) : (x * y = y * x ↔ y⁻¹ * x * y = x) ↔ (x⁻¹ * y⁻¹ * x * y = 1) :=", "goal": "G : Type u_1\ninst✝ : Group G\nx y : G\n⊢ (x * y = y * x ↔ y⁻¹ * x * y = x) ↔ x⁻¹ * y⁻¹ * x * y = 1", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_20", "split": "test", "informal_prefix": "/-- For $x$ an element in $G$ show that $x$ and $x^{-1}$ have the same order.-/\n", "formal_statement": "theorem exercise_1_1_20 {G : Type*} [Group G] {x : G} :\n orderOf x = orderOf x⁻¹ :=", "goal": "G : Type u_1\ninst✝ : Group G\nx : G\n⊢ orderOf x = orderOf x⁻¹", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_22a", "split": "valid", "informal_prefix": "/-- If $x$ and $g$ are elements of the group $G$, prove that $|x|=\\left|g^{-1} x g\\right|$.-/\n", "formal_statement": "theorem exercise_1_1_22a {G : Type*} [Group G] (x g : G) :\n orderOf x = orderOf (g⁻¹ * x * g) :=", "goal": "G : Type u_1\ninst✝ : Group G\nx g : G\n⊢ orderOf x = orderOf (g⁻¹ * x * g)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_22b", "split": "test", "informal_prefix": "/-- Deduce that $|a b|=|b a|$ for all $a, b \\in G$.-/\n", "formal_statement": "theorem exercise_1_1_22b {G: Type*} [Group G] (a b : G) :\n orderOf (a * b) = orderOf (b * a) :=", "goal": "G : Type u_1\ninst✝ : Group G\na b : G\n⊢ orderOf (a * b) = orderOf (b * a)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_25", "split": "valid", "informal_prefix": "/-- Prove that if $x^{2}=1$ for all $x \\in G$ then $G$ is abelian.-/\n", "formal_statement": "theorem exercise_1_1_25 {G : Type*} [Group G]\n (h : ∀ x : G, x ^ 2 = 1) : ∀ a b : G, a*b = b*a :=", "goal": "G : Type u_1\ninst✝ : Group G\nh : ∀ (x : G), x ^ 2 = 1\n⊢ ∀ (a b : G), a * b = b * a", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_29", "split": "test", "informal_prefix": "/-- Prove that $A \\times B$ is an abelian group if and only if both $A$ and $B$ are abelian.-/\n", "formal_statement": "theorem exercise_1_1_29 {A B : Type*} [Group A] [Group B] :\n ∀ x y : A × B, x*y = y*x ↔ (∀ x y : A, x*y = y*x) ∧\n (∀ x y : B, x*y = y*x) :=", "goal": "A : Type u_1\nB : Type u_2\ninst✝¹ : Group A\ninst✝ : Group B\n⊢ ∀ (x y : A × B), x * y = y * x ↔ (∀ (x y : A), x * y = y * x) ∧ ∀ (x y : B), x * y = y * x", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_1_34", "split": "valid", "informal_prefix": "/-- If $x$ is an element of infinite order in $G$, prove that the elements $x^{n}, n \\in \\mathbb{Z}$ are all distinct.-/\n", "formal_statement": "theorem exercise_1_1_34 {G : Type*} [Group G] {x : G}\n (hx_inf : orderOf x = 0) (n m : ) :\n x ^ n ≠ x ^ m :=", "goal": "G : Type u_1\ninst✝ : Group G\nx : G\nhx_inf : orderOf x = 0\nn m : \n⊢ x ^ n ≠ x ^ m", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_3_8", "split": "test", "informal_prefix": "/-- Prove that if $\\Omega=\\{1,2,3, \\ldots\\}$ then $S_{\\Omega}$ is an infinite group-/\n", "formal_statement": "theorem exercise_1_3_8 : Infinite (Equiv.Perm ) :=", "goal": "⊢ Infinite (Equiv.Perm )", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_6_4", "split": "valid", "informal_prefix": "/-- Prove that the multiplicative groups $\\mathbb{R}-\\{0\\}$ and $\\mathbb{C}-\\{0\\}$ are not isomorphic.-/\n", "formal_statement": "theorem exercise_1_6_4 :\n IsEmpty (Multiplicative ≃* Multiplicative ) :=", "goal": "⊢ IsEmpty (Multiplicative ≃* Multiplicative )", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_6_11", "split": "test", "informal_prefix": "/-- Let $A$ and $B$ be groups. Prove that $A \\times B \\cong B \\times A$.-/\n", "formal_statement": "noncomputable def exercise_1_6_11 {A B : Type*} [Group A] [Group B] :\n A × B ≃* B × A :=", "goal": "A : Type u_1\nB : Type u_2\ninst✝¹ : Group A\ninst✝ : Group B\n⊢ A × B ≃* B × A", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_6_17", "split": "valid", "informal_prefix": "/-- Let $G$ be any group. Prove that the map from $G$ to itself defined by $g \\mapsto g^{-1}$ is a homomorphism if and only if $G$ is abelian.-/\n", "formal_statement": "theorem exercise_1_6_17 {G : Type*} [Group G] (f : G → G)\n (hf : f = λ g => g⁻¹) :\n ∀ x y : G, f x * f y = f (x*y) ↔ ∀ x y : G, x*y = y*x :=", "goal": "G : Type u_1\ninst✝ : Group G\nf : G → G\nhf : f = fun g => g⁻¹\n⊢ ∀ (x y : G), f x * f y = f (x * y) ↔ ∀ (x y : G), x * y = y * x", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_6_23", "split": "test", "informal_prefix": "/-- Let $G$ be a finite group which possesses an automorphism $\\sigma$ such that $\\sigma(g)=g$ if and only if $g=1$. If $\\sigma^{2}$ is the identity map from $G$ to $G$, prove that $G$ is abelian.-/\n", "formal_statement": "theorem exercise_1_6_23 {G : Type*}\n [Group G] (σ : MulAut G) (hs : ∀ g : G, σ g = 1 → g = 1)\n (hs2 : ∀ g : G, σ (σ g) = g) :\n ∀ x y : G, x*y = y*x :=", "goal": "G : Type u_1\ninst✝ : Group G\nσ : MulAut G\nhs : ∀ (g : G), σ g = 1 → g = 1\nhs2 : ∀ (g : G), σ (σ g) = g\n⊢ ∀ (x y : G), x * y = y * x", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_1_5", "split": "valid", "informal_prefix": "/-- Prove that $G$ cannot have a subgroup $H$ with $|H|=n-1$, where $n=|G|>2$.-/\n", "formal_statement": "theorem exercise_2_1_5 {G : Type*} [Group G] [Fintype G]\n (hG : card G > 2) (H : Subgroup G) [Fintype H] :\n card H ≠ card G - 1 :=", "goal": "G : Type u_1\ninst✝² : Group G\ninst✝¹ : Fintype G\nhG : card G > 2\nH : Subgroup G\ninst✝ : Fintype ↥H\n⊢ card ↥H ≠ card G - 1", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_1_13", "split": "test", "informal_prefix": "/-- Let $H$ be a subgroup of the additive group of rational numbers with the property that $1 / x \\in H$ for every nonzero element $x$ of $H$. Prove that $H=0$ or $\\mathbb{Q}$.-/\n", "formal_statement": "theorem exercise_2_1_13 (H : AddSubgroup ) {x : }\n (hH : x ∈ H → (1 / x) ∈ H):\n H = ⊥ H = :=", "goal": "H : AddSubgroup \nx : \nhH : x ∈ H → 1 / x ∈ H\n⊢ H = ⊥ H = ", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_4_4", "split": "valid", "informal_prefix": "/-- Prove that if $H$ is a subgroup of $G$ then $H$ is generated by the set $H-\\{1\\}$.-/\n", "formal_statement": "theorem exercise_2_4_4 {G : Type*} [Group G] (H : Subgroup G) :\n closure ((H : Set G) \\ {1}) = :=", "goal": "G : Type u_1\ninst✝ : Group G\nH : Subgroup G\n⊢ Subgroup.closure (↑H \\ {1}) = ", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_4_16a", "split": "test", "informal_prefix": "/-- A subgroup $M$ of a group $G$ is called a maximal subgroup if $M \\neq G$ and the only subgroups of $G$ which contain $M$ are $M$ and $G$. Prove that if $H$ is a proper subgroup of the finite group $G$ then there is a maximal subgroup of $G$ containing $H$.-/\n", "formal_statement": "theorem exercise_2_4_16a {G : Type*} [Group G] {H : Subgroup G}\n (hH : H ≠ ) :\n ∃ M : Subgroup G, M ≠ ∧\n ∀ K : Subgroup G, M ≤ K → K = M K = ∧\n H ≤ M :=", "goal": "G : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : H ≠ \n⊢ ∃ M, M ≠ ∧ ∀ (K : Subgroup G), M ≤ K → K = M K = ∧ H ≤ M", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_4_16b", "split": "valid", "informal_prefix": "/-- Show that the subgroup of all rotations in a dihedral group is a maximal subgroup.-/\n", "formal_statement": "theorem exercise_2_4_16b {n : } {hn : n ≠ 0}\n {R : Subgroup (DihedralGroup n)}\n (hR : R = Subgroup.closure {DihedralGroup.r 1}) :\n R ≠ ∧\n ∀ K : Subgroup (DihedralGroup n), R ≤ K → K = R K = :=", "goal": "n : \nhn : n ≠ 0\nR : Subgroup (DihedralGroup n)\nhR : R = Subgroup.closure {DihedralGroup.r 1}\n⊢ R ≠ ∧ ∀ (K : Subgroup (DihedralGroup n)), R ≤ K → K = R K = ", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_4_16c", "split": "test", "informal_prefix": "/-- Show that if $G=\\langle x\\rangle$ is a cyclic group of order $n \\geq 1$ then a subgroup $H$ is maximal if and only $H=\\left\\langle x^{p}\\right\\rangle$ for some prime $p$ dividing $n$.-/\n", "formal_statement": "theorem exercise_2_4_16c {n : } (H : AddSubgroup (ZMod n)) :\n ∃ p : (ZMod n), Prime p ∧ H = AddSubgroup.closure {p} ↔\n (H ≠ ∧ ∀ K : AddSubgroup (ZMod n), H ≤ K → K = H K = ) :=", "goal": "n : \nH : AddSubgroup (ZMod n)\n⊢ ∃ p, Prime p ∧ H = AddSubgroup.closure {p} ↔ H ≠ ∧ ∀ (K : AddSubgroup (ZMod n)), H ≤ K → K = H K = ", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_1_3a", "split": "valid", "informal_prefix": "/-- Let $A$ be an abelian group and let $B$ be a subgroup of $A$. Prove that $A / B$ is abelian.-/\n", "formal_statement": "theorem exercise_3_1_3a {A : Type*} [CommGroup A] (B : Subgroup A) :\n ∀ a b : A B, a*b = b*a :=", "goal": "A : Type u_1\ninst✝ : CommGroup A\nB : Subgroup A\n⊢ ∀ (a b : A B), a * b = b * a", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_1_22a", "split": "test", "informal_prefix": "/-- Prove that if $H$ and $K$ are normal subgroups of a group $G$ then their intersection $H \\cap K$ is also a normal subgroup of $G$.-/\n", "formal_statement": "theorem exercise_3_1_22a (G : Type*) [Group G] (H K : Subgroup G)\n [Normal H] [Normal K] :\n Normal (H ⊓ K) :=", "goal": "G : Type u_1\ninst✝² : Group G\nH K : Subgroup G\ninst✝¹ : H.Normal\ninst✝ : K.Normal\n⊢ (H ⊓ K).Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_1_22b", "split": "valid", "informal_prefix": "/-- Prove that the intersection of an arbitrary nonempty collection of normal subgroups of a group is a normal subgroup (do not assume the collection is countable).-/\n", "formal_statement": "theorem exercise_3_1_22b {G : Type*} [Group G] (I : Type*)\n (H : I → Subgroup G) (hH : ∀ i : I, Normal (H i)) :\n Normal (⨅ (i : I), H i) :=", "goal": "G : Type u_1\ninst✝ : Group G\nI : Type u_2\nH : I → Subgroup G\nhH : ∀ (i : I), (H i).Normal\n⊢ (⨅ i, H i).Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2_8", "split": "test", "informal_prefix": "/-- Prove that if $H$ and $K$ are finite subgroups of $G$ whose orders are relatively prime then $H \\cap K=1$.-/\n", "formal_statement": "theorem exercise_3_2_8 {G : Type*} [Group G] (H K : Subgroup G)\n [Fintype H] [Fintype K]\n (hHK : Nat.Coprime (card H) (card K)) :\n H ⊓ K = ⊥ :=", "goal": "G : Type u_1\ninst✝² : Group G\nH K : Subgroup G\ninst✝¹ : Fintype ↥H\ninst✝ : Fintype ↥K\nhHK : (card ↥H).Coprime (card ↥K)\n⊢ H ⊓ K = ⊥", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2_11", "split": "valid", "informal_prefix": "/-- Let $H \\leq K \\leq G$. Prove that $|G: H|=|G: K| \\cdot|K: H|$ (do not assume $G$ is finite).-/\n", "formal_statement": "theorem exercise_3_2_11 {G : Type*} [Group G] {H K : Subgroup G}\n (hHK : H ≤ K) :\n H.index = K.index * H.relindex K :=", "goal": "G : Type u_1\ninst✝ : Group G\nH K : Subgroup G\nhHK : H ≤ K\n⊢ H.index = K.index * H.relindex K", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2_16", "split": "test", "informal_prefix": "/-- Use Lagrange's Theorem in the multiplicative group $(\\mathbb{Z} / p \\mathbb{Z})^{\\times}$to prove Fermat's Little Theorem: if $p$ is a prime then $a^{p} \\equiv a(\\bmod p)$ for all $a \\in \\mathbb{Z}$.-/\n", "formal_statement": "theorem exercise_3_2_16 (p : ) (hp : Nat.Prime p) (a : ) :\n Nat.Coprime a p → a ^ p ≡ a [ZMOD p] :=", "goal": "p : \nhp : p.Prime\na : \n⊢ a.Coprime p → ↑a ^ p ≡ ↑a [ZMOD ↑p]", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_2_21a", "split": "valid", "informal_prefix": "/-- Prove that $\\mathbb{Q}$ has no proper subgroups of finite index.-/\n", "formal_statement": "theorem exercise_3_2_21a (H : AddSubgroup ) (hH : H ≠ ) : H.index = 0 :=", "goal": "H : AddSubgroup \nhH : H ≠ \n⊢ H.index = 0", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_3_3", "split": "test", "informal_prefix": "/-- Prove that if $H$ is a normal subgroup of $G$ of prime index $p$ then for all $K \\leq G$ either $K \\leq H$, or $G=H K$ and $|K: K \\cap H|=p$.-/\n", "formal_statement": "theorem exercise_3_3_3 {p : Nat.Primes} {G : Type*} [Group G]\n {H : Subgroup G} [hH : H.Normal] (hH1 : H.index = p) :\n ∀ K : Subgroup G, K ≤ H H ⊔ K = (K ⊓ H).relindex K = p :=", "goal": "p : Nat.Primes\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : H.Normal\nhH1 : H.index = ↑p\n⊢ ∀ (K : Subgroup G), K ≤ H H ⊔ K = (K ⊓ H).relindex K = ↑p", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_4_1", "split": "valid", "informal_prefix": "/-- Prove that if $G$ is an abelian simple group then $G \\cong Z_{p}$ for some prime $p$ (do not assume $G$ is a finite group).-/\n", "formal_statement": "theorem exercise_3_4_1 (G : Type*) [CommGroup G] [IsSimpleGroup G] :\n IsCyclic G ∧ ∃ G_fin : Fintype G, Nat.Prime (@card G G_fin) :=", "goal": "G : Type u_1\ninst✝¹ : CommGroup G\ninst✝ : IsSimpleGroup G\n⊢ IsCyclic G ∧ ∃ G_fin, (card G).Prime", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_4_4", "split": "test", "informal_prefix": "/-- Use Cauchy's Theorem and induction to show that a finite abelian group has a subgroup of order $n$ for each positive divisor $n$ of its order.-/\n", "formal_statement": "theorem exercise_3_4_4 {G : Type*} [CommGroup G] [Fintype G] {n : }\n (hn : n (card G)) :\n ∃ (H : Subgroup G) (H_fin : Fintype H), @card H H_fin = n :=", "goal": "G : Type u_1\ninst✝¹ : CommGroup G\ninst✝ : Fintype G\nn : \nhn : n card G\n⊢ ∃ H H_fin, card ↥H = n", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_4_5a", "split": "valid", "informal_prefix": "/-- Prove that subgroups of a solvable group are solvable.-/\n", "formal_statement": "theorem exercise_3_4_5a {G : Type*} [Group G]\n (H : Subgroup G) [IsSolvable G] : IsSolvable H :=", "goal": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : IsSolvable G\n⊢ IsSolvable ↥H", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_4_5b", "split": "test", "informal_prefix": "/-- Prove that quotient groups of a solvable group are solvable.-/\n", "formal_statement": "theorem exercise_3_4_5b {G : Type*} [Group G] [IsSolvable G]\n (H : Subgroup G) [Normal H] :\n IsSolvable (G H) :=", "goal": "G : Type u_1\ninst✝² : Group G\ninst✝¹ : IsSolvable G\nH : Subgroup G\ninst✝ : H.Normal\n⊢ IsSolvable (G H)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_4_11", "split": "valid", "informal_prefix": "/-- Prove that if $H$ is a nontrivial normal subgroup of the solvable group $G$ then there is a nontrivial subgroup $A$ of $H$ with $A \\unlhd G$ and $A$ abelian.-/\n", "formal_statement": "theorem exercise_3_4_11 {G : Type*} [Group G] [IsSolvable G]\n {H : Subgroup G} (hH : H ≠ ⊥) [H.Normal] :\n ∃ A ≤ H, A.Normal ∧ ∀ a b : A, a*b = b*a :=", "goal": "G : Type u_1\ninst✝² : Group G\ninst✝¹ : IsSolvable G\nH : Subgroup G\nhH : H ≠ ⊥\ninst✝ : H.Normal\n⊢ ∃ A ≤ H, A.Normal ∧ ∀ (a b : ↥A), a * b = b * a", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_2_8", "split": "test", "informal_prefix": "/-- Prove that if $H$ has finite index $n$ then there is a normal subgroup $K$ of $G$ with $K \\leq H$ and $|G: K| \\leq n!$.-/\n", "formal_statement": "theorem exercise_4_2_8 {G : Type*} [Group G] {H : Subgroup G}\n {n : } (hn : n > 0) (hH : H.index = n) :\n ∃ K ≤ H, K.Normal ∧ K.index ≤ n.factorial :=", "goal": "G : Type u_1\ninst✝ : Group G\nH : Subgroup G\nn : \nhn : n > 0\nhH : H.index = n\n⊢ ∃ K ≤ H, K.Normal ∧ K.index ≤ n.factorial", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_3_26", "split": "valid", "informal_prefix": "/-- Let $G$ be a transitive permutation group on the finite set $A$ with $|A|>1$. Show that there is some $\\sigma \\in G$ such that $\\sigma(a) \\neq a$ for all $a \\in A$.-/\n", "formal_statement": "theorem exercise_4_3_26 {α : Type*} [Fintype α] (ha : card α > 1)\n (h_tran : ∀ a b: α, ∃ σ : Equiv.Perm α, σ a = b) :\n ∃ σ : Equiv.Perm α, ∀ a : α, σ a ≠ a :=", "goal": "α : Type u_1\ninst✝ : Fintype α\nha : card α > 1\nh_tran : ∀ (a b : α), ∃ σ, σ a = b\n⊢ ∃ σ, ∀ (a : α), σ a ≠ a", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_2_9a", "split": "test", "informal_prefix": "/-- Prove that if $p$ is a prime and $G$ is a group of order $p^{\\alpha}$ for some $\\alpha \\in \\mathbb{Z}^{+}$, then every subgroup of index $p$ is normal in $G$.-/\n", "formal_statement": "theorem exercise_4_2_9a {G : Type*} [Fintype G] [Group G] {p α : }\n (hp : p.Prime) (ha : α > 0) (hG : card G = p ^ α) :\n ∀ H : Subgroup G, H.index = p → H.Normal :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\np α : \nhp : p.Prime\nha : α > 0\nhG : card G = p ^ α\n⊢ ∀ (H : Subgroup G), H.index = p → H.Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_2_14", "split": "valid", "informal_prefix": "/-- Let $G$ be a finite group of composite order $n$ with the property that $G$ has a subgroup of order $k$ for each positive integer $k$ dividing $n$. Prove that $G$ is not simple.-/\n", "formal_statement": "theorem exercise_4_2_14 {G : Type*} [Fintype G] [Group G]\n (hG : ¬ (card G).Prime) (hG1 : ∀ k : , k card G →\n ∃ (H : Subgroup G) (fH : Fintype H), @card H fH = k) :\n ¬ IsSimpleGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : ¬(card G).Prime\nhG1 : ∀ (k : ), k card G → ∃ H fH, card ↥H = k\n⊢ ¬IsSimpleGroup G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4_2", "split": "test", "informal_prefix": "/-- Prove that if $G$ is an abelian group of order $p q$, where $p$ and $q$ are distinct primes, then $G$ is cyclic.-/\n", "formal_statement": "theorem exercise_4_4_2 {G : Type*} [Fintype G] [Group G]\n {p q : Nat.Primes} (hpq : p ≠ q) (hG : card G = p*q) :\n IsCyclic G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\np q : Nat.Primes\nhpq : p ≠ q\nhG : card G = ↑p * ↑q\n⊢ IsCyclic G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4_6a", "split": "valid", "informal_prefix": "/-- Prove that characteristic subgroups are normal.-/\n", "formal_statement": "theorem exercise_4_4_6a {G : Type*} [Group G] (H : Subgroup G)\n [Characteristic H] : Normal H :=", "goal": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : H.Characteristic\n⊢ H.Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4_6b", "split": "test", "informal_prefix": "/-- Prove that there exists a normal subgroup that is not characteristic.-/\n", "formal_statement": "theorem exercise_4_4_6b :\n ∃ (G : Type*) (hG : Group G) (H : @Subgroup G hG), @Characteristic G hG H ∧ ¬ @Normal G hG H :=", "goal": "⊢ ∃ G hG H, H.Characteristic ∧ ¬H.Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4_7", "split": "valid", "informal_prefix": "/-- If $H$ is the unique subgroup of a given order in a group $G$ prove $H$ is characteristic in $G$.-/\n", "formal_statement": "theorem exercise_4_4_7 {G : Type*} [Group G] {H : Subgroup G} [Fintype H]\n (hH : ∀ (K : Subgroup G) (fK : Fintype K), card H = @card K fK → H = K) :\n H.Characteristic :=", "goal": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Fintype ↥H\nhH : ∀ (K : Subgroup G) (fK : Fintype ↥K), card ↥H = card ↥K → H = K\n⊢ H.Characteristic", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4_8a", "split": "test", "informal_prefix": "/-- Let $G$ be a group with subgroups $H$ and $K$ with $H \\leq K$. Prove that if $H$ is characteristic in $K$ and $K$ is normal in $G$ then $H$ is normal in $G$.-/\n", "formal_statement": "theorem exercise_4_4_8a {G : Type*} [Group G] (H K : Subgroup G)\n (hHK : H ≤ K) [hHK1 : (H.subgroupOf K).Normal] [hK : K.Normal] :\n H.Normal :=", "goal": "G : Type u_1\ninst✝ : Group G\nH K : Subgroup G\nhHK : H ≤ K\nhHK1 : (H.subgroupOf K).Normal\nhK : K.Normal\n⊢ H.Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_1a", "split": "valid", "informal_prefix": "/-- Prove that if $P \\in \\operatorname{Syl}_{p}(G)$ and $H$ is a subgroup of $G$ containing $P$ then $P \\in \\operatorname{Syl}_{p}(H)$.-/\n", "formal_statement": "theorem exercise_4_5_1a {p : } {G : Type*} [Group G]\n {P : Subgroup G} (hP : IsPGroup p P) (H : Subgroup G)\n (hH : P ≤ H) : IsPGroup p H :=", "goal": "p : \nG : Type u_1\ninst✝ : Group G\nP : Subgroup G\nhP : IsPGroup p ↥P\nH : Subgroup G\nhH : P ≤ H\n⊢ IsPGroup p ↥H", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_13", "split": "test", "informal_prefix": "/-- Prove that a group of order 56 has a normal Sylow $p$-subgroup for some prime $p$ dividing its order.-/\n", "formal_statement": "theorem exercise_4_5_13 {G : Type*} [Group G] [Fintype G]\n (hG : card G = 56) :\n ∃ (p : ) (P : Sylow p G), P.Normal :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 56\n⊢ ∃ p P, (↑P).Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_14", "split": "valid", "informal_prefix": "/-- Prove that a group of order 312 has a normal Sylow $p$-subgroup for some prime $p$ dividing its order.-/\n", "formal_statement": "theorem exercise_4_5_14 {G : Type*} [Group G] [Fintype G]\n (hG : card G = 312) :\n ∃ (p : ) (P : Sylow p G), P.Normal :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 312\n⊢ ∃ p P, (↑P).Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_15", "split": "test", "informal_prefix": "/-- Prove that a group of order 351 has a normal Sylow $p$-subgroup for some prime $p$ dividing its order.-/\n", "formal_statement": "theorem exercise_4_5_15 {G : Type*} [Group G] [Fintype G]\n (hG : card G = 351) :\n ∃ (p : ) (P : Sylow p G), P.Normal :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 351\n⊢ ∃ p P, (↑P).Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_16", "split": "valid", "informal_prefix": "/-- Let $|G|=p q r$, where $p, q$ and $r$ are primes with $p<q<r$. Prove that $G$ has a normal Sylow subgroup for either $p, q$ or $r$.-/\n", "formal_statement": "theorem exercise_4_5_16 {p q r : } {G : Type*} [Group G]\n [Fintype G] (hpqr : p < q ∧ q < r)\n (hpqr1 : p.Prime ∧ q.Prime ∧ r.Prime)(hG : card G = p*q*r) :\n Nonempty (Sylow p G) Nonempty (Sylow q G) Nonempty (Sylow r G) :=", "goal": "p q r : \nG : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhpqr : p < q ∧ q < r\nhpqr1 : p.Prime ∧ q.Prime ∧ r.Prime\nhG : card G = p * q * r\n⊢ Nonempty (Sylow p G) Nonempty (Sylow q G) Nonempty (Sylow r G)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_17", "split": "test", "informal_prefix": "/-- Prove that if $|G|=105$ then $G$ has a normal Sylow 5 -subgroup and a normal Sylow 7-subgroup.-/\n", "formal_statement": "theorem exercise_4_5_17 {G : Type*} [Fintype G] [Group G]\n (hG : card G = 105) :\n Nonempty (Sylow 5 G) ∧ Nonempty (Sylow 7 G) :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 105\n⊢ Nonempty (Sylow 5 G) ∧ Nonempty (Sylow 7 G)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_18", "split": "valid", "informal_prefix": "/-- Prove that a group of order 200 has a normal Sylow 5-subgroup.-/\n", "formal_statement": "theorem exercise_4_5_18 {G : Type*} [Fintype G] [Group G]\n (hG : card G = 200) :\n ∃ N : Sylow 5 G, N.Normal :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 200\n⊢ ∃ N, (↑N).Normal", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_19", "split": "test", "informal_prefix": "/-- Prove that if $|G|=6545$ then $G$ is not simple.-/\n", "formal_statement": "theorem exercise_4_5_19 {G : Type*} [Fintype G] [Group G]\n (hG : card G = 6545) : ¬ IsSimpleGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 6545\n⊢ ¬IsSimpleGroup G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_20", "split": "valid", "informal_prefix": "/-- Prove that if $|G|=1365$ then $G$ is not simple.-/\n", "formal_statement": "theorem exercise_4_5_20 {G : Type*} [Fintype G] [Group G]\n (hG : card G = 1365) : ¬ IsSimpleGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 1365\n⊢ ¬IsSimpleGroup G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_21", "split": "test", "informal_prefix": "/-- Prove that if $|G|=2907$ then $G$ is not simple.-/\n", "formal_statement": "theorem exercise_4_5_21 {G : Type*} [Fintype G] [Group G]\n (hG : card G = 2907) : ¬ IsSimpleGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 2907\n⊢ ¬IsSimpleGroup G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_22", "split": "valid", "informal_prefix": "/-- Prove that if $|G|=132$ then $G$ is not simple.-/\n", "formal_statement": "theorem exercise_4_5_22 {G : Type*} [Fintype G] [Group G]\n (hG : card G = 132) : ¬ IsSimpleGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 132\n⊢ ¬IsSimpleGroup G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_23", "split": "test", "informal_prefix": "/-- Prove that if $|G|=462$ then $G$ is not simple.-/\n", "formal_statement": "theorem exercise_4_5_23 {G : Type*} [Fintype G] [Group G]\n (hG : card G = 462) : ¬ IsSimpleGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Fintype G\ninst✝ : Group G\nhG : card G = 462\n⊢ ¬IsSimpleGroup G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_28", "split": "valid", "informal_prefix": "/-- Let $G$ be a group of order 105. Prove that if a Sylow 3-subgroup of $G$ is normal then $G$ is abelian.-/\n", "formal_statement": "def exercise_4_5_28 {G : Type*} [Group G] [Fintype G]\n (hG : card G = 105) (P : Sylow 3 G) [hP : P.Normal] :\n CommGroup G :=", "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Fintype G\nhG : card G = 105\nP : Sylow 3 G\nhP : (↑P).Normal\n⊢ CommGroup G", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5_33", "split": "test", "informal_prefix": "/-- Let $P$ be a normal Sylow $p$-subgroup of $G$ and let $H$ be any subgroup of $G$. Prove that $P \\cap H$ is the unique Sylow $p$-subgroup of $H$.-/\n", "formal_statement": "theorem exercise_4_5_33 {G : Type*} [Group G] [Fintype G] {p : }\n (P : Sylow p G) [hP : P.Normal] (H : Subgroup G) [Fintype H] :\n ∀ R : Sylow p H, R.toSubgroup = (H ⊓ P.toSubgroup).subgroupOf H ∧\n Nonempty (Sylow p H) :=", "goal": "G : Type u_1\ninst✝² : Group G\ninst✝¹ : Fintype G\np : \nP : Sylow p G\nhP : (↑P).Normal\nH : Subgroup G\ninst✝ : Fintype ↥H\n⊢ ∀ (R : Sylow p ↥H), ↑R = (H ⊓ ↑P).subgroupOf H ∧ Nonempty (Sylow p ↥H)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_4_2", "split": "valid", "informal_prefix": "/-- Prove that a subgroup $H$ of $G$ is normal if and only if $[G, H] \\leq H$.-/\n", "formal_statement": "theorem exercise_5_4_2 {G : Type*} [Group G] (H : Subgroup G) :\n H.Normal ↔ ⁅( : Subgroup G), H⁆ ≤ H :=", "goal": "G : Type u_1\ninst✝ : Group G\nH : Subgroup G\n⊢ H.Normal ↔ ⁅⊤, H⁆ ≤ H", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_1_2", "split": "test", "informal_prefix": "/-- Prove that if $u$ is a unit in $R$ then so is $-u$.-/\n", "formal_statement": "theorem exercise_7_1_2 {R : Type*} [Ring R] {u : R}\n (hu : IsUnit u) : IsUnit (-u) :=", "goal": "R : Type u_1\ninst✝ : Ring R\nu : R\nhu : IsUnit u\n⊢ IsUnit (-u)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_1_11", "split": "valid", "informal_prefix": "/-- Prove that if $R$ is an integral domain and $x^{2}=1$ for some $x \\in R$ then $x=\\pm 1$.-/\n", "formal_statement": "theorem exercise_7_1_11 {R : Type*} [Ring R] [IsDomain R]\n {x : R} (hx : x^2 = 1) : x = 1 x = -1 :=", "goal": "R : Type u_1\ninst✝¹ : Ring R\ninst✝ : IsDomain R\nx : R\nhx : x ^ 2 = 1\n⊢ x = 1 x = -1", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_1_12", "split": "test", "informal_prefix": "/-- Prove that any subring of a field which contains the identity is an integral domain.-/\n", "formal_statement": "theorem exercise_7_1_12 {F : Type*} [Field F] {K : Subring F}\n (hK : (1 : F) ∈ K) : IsDomain K :=", "goal": "F : Type u_1\ninst✝ : Field F\nK : Subring F\nhK : 1 ∈ K\n⊢ IsDomain ↥K", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_1_15", "split": "valid", "informal_prefix": "/-- A ring $R$ is called a Boolean ring if $a^{2}=a$ for all $a \\in R$. Prove that every Boolean ring is commutative.-/\n", "formal_statement": "def exercise_7_1_15 {R : Type*} [Ring R] (hR : ∀ a : R, a^2 = a) :\n CommRing R :=", "goal": "R : Type u_1\ninst✝ : Ring R\nhR : ∀ (a : R), a ^ 2 = a\n⊢ CommRing R", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_2_2", "split": "test", "informal_prefix": "/-- Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\\cdots+a_{1} x+a_{0}$ be an element of the polynomial ring $R[x]$. Prove that $p(x)$ is a zero divisor in $R[x]$ if and only if there is a nonzero $b \\in R$ such that $b p(x)=0$.-/\n", "formal_statement": "theorem exercise_7_2_2 {R : Type*} [Ring R] (p : Polynomial R) :\n p 0 ↔ ∃ b : R, b ≠ 0 ∧ b • p = 0 :=", "goal": "R : Type u_1\ninst✝ : Ring R\np : R[X]\n⊢ p 0 ↔ ∃ b, b ≠ 0 ∧ b • p = 0", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_2_12", "split": "valid", "informal_prefix": "/-- Let $G=\\left\\{g_{1}, \\ldots, g_{n}\\right\\}$ be a finite group. Prove that the element $N=g_{1}+g_{2}+\\ldots+g_{n}$ is in the center of the group ring $R G$.-/\n", "formal_statement": "theorem exercise_7_2_12 {R G : Type*} [Ring R] [Group G] [Fintype G] :\n ∑ g : G, MonoidAlgebra.of R G g ∈ center (MonoidAlgebra R G) :=", "goal": "R : Type u_1\nG : Type u_2\ninst✝² : Ring R\ninst✝¹ : Group G\ninst✝ : Fintype G\n⊢ ∑ g : G, (MonoidAlgebra.of R G) g ∈ Set.center (MonoidAlgebra R G)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_3_16", "split": "test", "informal_prefix": "/-- Let $\\varphi: R \\rightarrow S$ be a surjective homomorphism of rings. Prove that the image of the center of $R$ is contained in the center of $S$.-/\n", "formal_statement": "theorem exercise_7_3_16 {R S : Type*} [Ring R] [Ring S]\n {φ : R →+* S} (hf : Function.Surjective φ) :\n φ '' (center R) ⊂ center S :=", "goal": "R : Type u_1\nS : Type u_2\ninst✝¹ : Ring R\ninst✝ : Ring S\nφ : R →+* S\nhf : Function.Surjective ⇑φ\n⊢ ⇑φ '' Set.center R ⊂ Set.center S", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_3_37", "split": "valid", "informal_prefix": "/-- An ideal $N$ is called nilpotent if $N^{n}$ is the zero ideal for some $n \\geq 1$. Prove that the ideal $p \\mathbb{Z} / p^{m} \\mathbb{Z}$ is a nilpotent ideal in the ring $\\mathbb{Z} / p^{m} \\mathbb{Z}$.-/\n", "formal_statement": "theorem exercise_7_3_37 {p m : } (hp : p.Prime) :\n IsNilpotent (span ({↑p} : Set $ ZMod $ p^m) : Ideal $ ZMod $ p^m) :=", "goal": "p m : \nhp : p.Prime\n⊢ IsNilpotent (span {↑p})", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_7_4_27", "split": "test", "informal_prefix": "/-- Let $R$ be a commutative ring with $1 \\neq 0$. Prove that if $a$ is a nilpotent element of $R$ then $1-a b$ is a unit for all $b \\in R$.-/\n", "formal_statement": "theorem exercise_7_4_27 {R : Type*} [CommRing R] (hR : (0 : R) ≠ 1)\n {a : R} (ha : IsNilpotent a) (b : R) :\n IsUnit (1-a*b) :=", "goal": "R : Type u_1\ninst✝ : CommRing R\nhR : 0 ≠ 1\na : R\nha : IsNilpotent a\nb : R\n⊢ IsUnit (1 - a * b)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_8_1_12", "split": "valid", "informal_prefix": "/-- Let $N$ be a positive integer. Let $M$ be an integer relatively prime to $N$ and let $d$ be an integer relatively prime to $\\varphi(N)$, where $\\varphi$ denotes Euler's $\\varphi$-function. Prove that if $M_{1} \\equiv M^{d} \\pmod N$ then $M \\equiv M_{1}^{d^{\\prime}} \\pmod N$ where $d^{\\prime}$ is the inverse of $d \\bmod \\varphi(N)$: $d d^{\\prime} \\equiv 1 \\pmod {\\varphi(N)}$.-/\n", "formal_statement": "theorem exercise_8_1_12 {N : } (hN : N > 0) {M M': } {d : }\n (hMN : M.gcd N = 1) (hMd : d.gcd N.totient = 1)\n (hM' : M' ≡ M^d [ZMOD N]) :\n ∃ d' : , d' * d ≡ 1 [ZMOD N.totient] ∧\n M ≡ M'^d' [ZMOD N] :=", "goal": "N : \nhN : N > 0\nM M' : \nd : \nhMN : M.gcd ↑N = 1\nhMd : d.gcd N.totient = 1\nhM' : M' ≡ M ^ d [ZMOD ↑N]\n⊢ ∃ d', ↑d' * ↑d ≡ 1 [ZMOD ↑N.totient] ∧ M ≡ M' ^ d' [ZMOD ↑N]", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_8_2_4", "split": "test", "informal_prefix": "/-- Let $R$ be an integral domain. Prove that if the following two conditions hold then $R$ is a Principal Ideal Domain: (i) any two nonzero elements $a$ and $b$ in $R$ have a greatest common divisor which can be written in the form $r a+s b$ for some $r, s \\in R$, and (ii) if $a_{1}, a_{2}, a_{3}, \\ldots$ are nonzero elements of $R$ such that $a_{i+1} \\mid a_{i}$ for all $i$, then there is a positive integer $N$ such that $a_{n}$ is a unit times $a_{N}$ for all $n \\geq N$.-/\n", "formal_statement": "theorem exercise_8_2_4 {R : Type*} [Ring R][NoZeroDivisors R]\n [CancelCommMonoidWithZero R] [GCDMonoid R]\n (h1 : ∀ a b : R, a ≠ 0 → b ≠ 0 → ∃ r s : R, gcd a b = r*a + s*b)\n (h2 : ∀ a : → R, (∀ i j : , i < j → a i a j) →\n ∃ N : , ∀ n ≥ N, ∃ u : R, IsUnit u ∧ a n = u * a N) :\n IsPrincipalIdealRing R :=", "goal": "R : Type u_1\ninst✝³ : Ring R\ninst✝² : NoZeroDivisors R\ninst✝¹ : CancelCommMonoidWithZero R\ninst✝ : GCDMonoid R\nh1 : ∀ (a b : R), a ≠ 0 → b ≠ 0 → ∃ r s, gcd a b = r * a + s * b\nh2 : ∀ (a : → R), (∀ (i j : ), i < j → a i a j) → ∃ N, ∀ n ≥ N, ∃ u, IsUnit u ∧ a n = u * a N\n⊢ IsPrincipalIdealRing R", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_8_3_4", "split": "valid", "informal_prefix": "/-- Prove that if an integer is the sum of two rational squares, then it is the sum of two integer squares.-/\n", "formal_statement": "theorem exercise_8_3_4 {R : Type*} {n : } {r s : }\n (h : r^2 + s^2 = n) :\n ∃ a b : , a^2 + b^2 = n :=", "goal": "R : Type u_1\nn : \nr s : \nh : r ^ 2 + s ^ 2 = ↑n\n⊢ ∃ a b, a ^ 2 + b ^ 2 = n", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_8_3_5a", "split": "test", "informal_prefix": "/-- Let $R=\\mathbb{Z}[\\sqrt{-n}]$ where $n$ is a squarefree integer greater than 3. Prove that $2, \\sqrt{-n}$ and $1+\\sqrt{-n}$ are irreducibles in $R$.-/\n", "formal_statement": "theorem exercise_8_3_5a {n : } (hn0 : n > 3) (hn1 : Squarefree n) :\n Irreducible (2 : Zsqrtd $ -n) ∧\n Irreducible (⟨0, 1⟩ : Zsqrtd $ -n) ∧\n Irreducible (1 + ⟨0, 1⟩ : Zsqrtd $ -n) :=", "goal": "n : \nhn0 : n > 3\nhn1 : Squarefree n\n⊢ Irreducible 2 ∧ Irreducible { re := 0, im := 1 } ∧ Irreducible (1 + { re := 0, im := 1 })", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_8_3_6a", "split": "valid", "informal_prefix": "/-- Prove that the quotient ring $\\mathbb{Z}[i] /(1+i)$ is a field of order 2.-/\n", "formal_statement": "theorem exercise_8_3_6a {R : Type} [Ring R]\n (hR : R = (GaussianInt span ({⟨0, 1⟩} : Set GaussianInt))) :\n IsField R ∧ ∃ finR : Fintype R, @card R finR = 2 :=", "goal": "R : Type\ninst✝ : Ring R\nhR : R = (GaussianInt span {{ re := 0, im := 1 }})\n⊢ IsField R ∧ ∃ finR, card R = 2", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_8_3_6b", "split": "test", "informal_prefix": "/-- Let $q \\in \\mathbb{Z}$ be a prime with $q \\equiv 3 \\bmod 4$. Prove that the quotient ring $\\mathbb{Z}[i] /(q)$ is a field with $q^{2}$ elements.-/\n", "formal_statement": "theorem exercise_8_3_6b {q : } (hq0 : q.Prime)\n (hq1 : q ≡ 3 [ZMOD 4]) {R : Type} [Ring R]\n (hR : R = (GaussianInt span ({↑q} : Set GaussianInt))) :\n IsField R ∧ ∃ finR : Fintype R, @card R finR = q^2 :=", "goal": "q : \nhq0 : q.Prime\nhq1 : ↑q ≡ 3 [ZMOD 4]\nR : Type\ninst✝ : Ring R\nhR : R = (GaussianInt span {↑q})\n⊢ IsField R ∧ ∃ finR, card R = q ^ 2", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_1_6", "split": "valid", "informal_prefix": "/-- Prove that $(x, y)$ is not a principal ideal in $\\mathbb{Q}[x, y]$.-/\n", "formal_statement": "theorem exercise_9_1_6 : ¬ Submodule.IsPrincipal\n (span ({MvPolynomial.X 0, MvPolynomial.X 1} : Set (MvPolynomial (Fin 2) ))) :=", "goal": "⊢ ¬Submodule.IsPrincipal (span {MvPolynomial.X 0, MvPolynomial.X 1})", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_1_10", "split": "test", "informal_prefix": "/-- Prove that the ring $\\mathbb{Z}\\left[x_{1}, x_{2}, x_{3}, \\ldots\\right] /\\left(x_{1} x_{2}, x_{3} x_{4}, x_{5} x_{6}, \\ldots\\right)$ contains infinitely many minimal prime ideals.-/\n", "formal_statement": "theorem exercise_9_1_10 {f : → MvPolynomial }\n (hf : f = λ i => MvPolynomial.X i * MvPolynomial.X (i+1)):\n Infinite (minimalPrimes (MvPolynomial span (range f))) :=", "goal": "f : → MvPolynomial \nhf : f = fun i => MvPolynomial.X i * MvPolynomial.X (i + 1)\n⊢ Infinite ↑(minimalPrimes (MvPolynomial span (range f)))", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_3_2", "split": "valid", "informal_prefix": "/-- Prove that if $f(x)$ and $g(x)$ are polynomials with rational coefficients whose product $f(x) g(x)$ has integer coefficients, then the product of any coefficient of $g(x)$ with any coefficient of $f(x)$ is an integer.-/\n", "formal_statement": "theorem exercise_9_3_2 {f g : Polynomial } (i j : )\n (hfg : ∀ n : , ∃ a : , (f*g).coeff = a) :\n ∃ a : , f.coeff i * g.coeff j = a :=", "goal": "f g : [X]\ni j : \nhfg : → ∃ a, (f * g).coeff = ↑a\n⊢ ∃ a, f.coeff i * g.coeff j = ↑a", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_4_2a", "split": "test", "informal_prefix": "/-- Prove that $x^4-4x^3+6$ is irreducible in $\\mathbb{Z}[x]$.-/\n", "formal_statement": "theorem exercise_9_4_2a : Irreducible (X^4 - 4*X^3 + 6 : Polynomial ) :=", "goal": "⊢ Irreducible (X ^ 4 - 4 * X ^ 3 + 6)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_4_2b", "split": "valid", "informal_prefix": "/-- Prove that $x^6+30x^5-15x^3 + 6x-120$ is irreducible in $\\mathbb{Z}[x]$.-/\n", "formal_statement": "theorem exercise_9_4_2b : Irreducible\n (X^6 + 30*X^5 - 15*X^3 + 6*X - 120 : Polynomial ) :=", "goal": "⊢ Irreducible (X ^ 6 + 30 * X ^ 5 - 15 * X ^ 3 + 6 * X - 120)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_4_2c", "split": "test", "informal_prefix": "/-- Prove that $x^4+4x^3+6x^2+2x+1$ is irreducible in $\\mathbb{Z}[x]$.-/\n", "formal_statement": "theorem exercise_9_4_2c : Irreducible\n (X^4 + 4*X^3 + 6*X^2 + 2*X + 1 : Polynomial ) :=", "goal": "⊢ Irreducible (X ^ 4 + 4 * X ^ 3 + 6 * X ^ 2 + 2 * X + 1)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_4_2d", "split": "valid", "informal_prefix": "/-- Prove that $\\frac{(x+2)^p-2^p}{x}$, where $p$ is an odd prime, is irreducible in $\\mathbb{Z}[x]$.-/\n", "formal_statement": "theorem exercise_9_4_2d {p : } (hp : p.Prime ∧ p > 2)\n {f : Polynomial } (hf : f = (X + 2)^p):\n Irreducible (∑ n in (f.support \\ {0}), (f.coeff n : Polynomial ) * X ^ (n-1) :\n Polynomial ) :=", "goal": "p : \nhp : p.Prime ∧ p > 2\nf : [X]\nhf : f = (X + 2) ^ p\n⊢ Irreducible (∑ n ∈ f.support \\ {0}, ↑(f.coeff n) * X ^ (n - 1))", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_4_9", "split": "test", "informal_prefix": "/-- Prove that the polynomial $x^{2}-\\sqrt{2}$ is irreducible over $\\mathbb{Z}[\\sqrt{2}]$. You may assume that $\\mathbb{Z}[\\sqrt{2}]$ is a U.F.D.-/\n", "formal_statement": "theorem exercise_9_4_9 :\n Irreducible (X^2 - C Zsqrtd.sqrtd : Polynomial (Zsqrtd 2)) :=", "goal": "⊢ Irreducible (X ^ 2 - C Zsqrtd.sqrtd)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_9_4_11", "split": "valid", "informal_prefix": "/-- Prove that $x^2+y^2-1$ is irreducible in $\\mathbb{Q}[x,y]$.-/\n", "formal_statement": "theorem exercise_9_4_11 :\n Irreducible ((MvPolynomial.X 0)^2 + (MvPolynomial.X 1)^2 - 1 : MvPolynomial (Fin 2) ) :=", "goal": "⊢ Irreducible (MvPolynomial.X 0 ^ 2 + MvPolynomial.X 1 ^ 2 - 1)", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_11_1_13", "split": "test", "informal_prefix": "/-- Prove that as vector spaces over $\\mathbb{Q}, \\mathbb{R}^n \\cong \\mathbb{R}$, for all $n \\in \\mathbb{Z}^{+}$.-/\n", "formal_statement": "def exercise_11_1_13 {ι : Type*} [Fintype ι] :\n (ι) ≃ₗ[] :=", "goal": "ι : Type u_1\ninst✝ : Fintype ι\n⊢ (ι) ≃ₗ[] ", "header": "import Mathlib\n\nopen Fintype Subgroup Set Polynomial Ideal\nopen scoped BigOperators\n\n"}
{"name": "exercise_13_1", "split": "valid", "informal_prefix": "/-- Let $X$ be a topological space; let $A$ be a subset of $X$. Suppose that for each $x \\in A$ there is an open set $U$ containing $x$ such that $U \\subset A$. Show that $A$ is open in $X$.-/\n", "formal_statement": "theorem exercise_13_1 (X : Type*) [TopologicalSpace X] (A : Set X)\n (h1 : ∀ x ∈ A, ∃ U : Set X, x ∈ U ∧ IsOpen U ∧ U ⊆ A) :\n IsOpen A :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nA : Set X\nh1 : ∀ x ∈ A, ∃ U, x ∈ U ∧ IsOpen U ∧ U ⊆ A\n⊢ IsOpen A", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_13_3b", "split": "test", "informal_prefix": "/-- Show that the collection $$\\mathcal{T}_\\infty = \\{U | X - U \\text{ is infinite or empty or all of X}\\}$$ does not need to be a topology on the set $X$.-/\n", "formal_statement": "theorem exercise_13_3b : ¬ ∀ X : Type, ∀s : Set (Set X),\n (∀ t : Set X, t ∈ s → (Set.Infinite tᶜ t = ∅ t = )) →\n (Set.Infinite (⋃₀ s)ᶜ (⋃₀ s) = ∅ (⋃₀ s) = ) :=", "goal": "⊢ ¬∀ (X : Type) (s : Set (Set X)), (∀ t ∈ s, tᶜ.Infinite t = ∅ t = ) → (⋃₀ s)ᶜ.Infinite ⋃₀ s = ∅ ⋃₀ s = ", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_13_4a1", "split": "valid", "informal_prefix": "/-- If $\\mathcal{T}_\\alpha$ is a family of topologies on $X$, show that $\\bigcap \\mathcal{T}_\\alpha$ is a topology on $X$.-/\n", "formal_statement": "theorem exercise_13_4a1 (X I : Type*) (T : I → Set (Set X)) (h : ∀ i, is_topology X (T i)) :\n is_topology X (⋂ i : I, T i) :=", "goal": "X : Type u_1\nI : Type u_2\nT : I → Set (Set X)\nh : ∀ (i : I), is_topology X (T i)\n⊢ is_topology X (⋂ i, T i)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef is_topology (X : Type*) (T : Set (Set X)) :=\n univ ∈ T ∧\n (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧\n (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)\n\n"}
{"name": "exercise_13_4a2", "split": "test", "informal_prefix": "/-- If $\\mathcal{T}_\\alpha$ is a family of topologies on $X$, show that $\\bigcup \\mathcal{T}_\\alpha$ does not need to be a topology on $X$.-/\n", "formal_statement": "theorem exercise_13_4a2 :\n ∃ (X I : Type*) (T : I → Set (Set X)),\n (∀ i, is_topology X (T i)) ∧ ¬ is_topology X (⋂ i : I, T i) :=", "goal": "⊢ ∃ X I T, (∀ (i : I), is_topology X (T i)) ∧ ¬is_topology X (⋂ i, T i)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef is_topology (X : Type*) (T : Set (Set X)) :=\n univ ∈ T ∧\n (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧\n (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)\n\n"}
{"name": "exercise_13_4b1", "split": "valid", "informal_prefix": "/-- Let $\\mathcal{T}_\\alpha$ be a family of topologies on $X$. Show that there is a unique smallest topology on $X$ containing all the collections $\\mathcal{T}_\\alpha$.-/\n", "formal_statement": "theorem exercise_13_4b1 (X I : Type*) (T : I → Set (Set X)) (h : ∀ i, is_topology X (T i)) :\n ∃! T', is_topology X T' ∧ (∀ i, T i ⊆ T') ∧\n ∀ T'', is_topology X T'' → (∀ i, T i ⊆ T'') → T'' ⊆ T' :=", "goal": "X : Type u_1\nI : Type u_2\nT : I → Set (Set X)\nh : ∀ (i : I), is_topology X (T i)\n⊢ ∃! T',\n is_topology X T' ∧\n (∀ (i : I), T i ⊆ T') ∧ ∀ (T'' : Set (Set X)), is_topology X T'' → (∀ (i : I), T i ⊆ T'') → T'' ⊆ T'", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef is_topology (X : Type*) (T : Set (Set X)) :=\n univ ∈ T ∧\n (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧\n (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)\n\n"}
{"name": "exercise_13_4b2", "split": "test", "informal_prefix": "/-- Let $\\mathcal{T}_\\alpha$ be a family of topologies on $X$. Show that there is a unique largest topology on $X$ contained in all the collections $\\mathcal{T}_\\alpha$.-/\n", "formal_statement": "theorem exercise_13_4b2 (X I : Type*) (T : I → Set (Set X)) (h : ∀ i, is_topology X (T i)) :\n ∃! T', is_topology X T' ∧ (∀ i, T' ⊆ T i) ∧\n ∀ T'', is_topology X T'' → (∀ i, T'' ⊆ T i) → T' ⊆ T'' :=", "goal": "X : Type u_1\nI : Type u_2\nT : I → Set (Set X)\nh : ∀ (i : I), is_topology X (T i)\n⊢ ∃! T',\n is_topology X T' ∧\n (∀ (i : I), T' ⊆ T i) ∧ ∀ (T'' : Set (Set X)), is_topology X T'' → (∀ (i : I), T'' ⊆ T i) → T' ⊆ T''", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef is_topology (X : Type*) (T : Set (Set X)) :=\n univ ∈ T ∧\n (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧\n (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)\n\n"}
{"name": "exercise_13_5a", "split": "valid", "informal_prefix": "/-- Show that if $\\mathcal{A}$ is a basis for a topology on $X$, then the topology generated by $\\mathcal{A}$ equals the intersection of all topologies on $X$ that contain $\\mathcal{A}$.-/\n", "formal_statement": "theorem exercise_13_5a {X : Type*}\n [TopologicalSpace X] (A : Set (Set X)) (hA : IsTopologicalBasis A) :\n generateFrom A = generateFrom (sInter {T | is_topology X T ∧ A ⊆ T}) :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nA : Set (Set X)\nhA : IsTopologicalBasis A\n⊢ generateFrom A = generateFrom (⋂₀ {T | is_topology X T ∧ A ⊆ T})", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef is_topology (X : Type*) (T : Set (Set X)) :=\n univ ∈ T ∧\n (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧\n (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)\n\n"}
{"name": "exercise_13_5b", "split": "test", "informal_prefix": "/-- Show that if $\\mathcal{A}$ is a subbasis for a topology on $X$, then the topology generated by $\\mathcal{A}$ equals the intersection of all topologies on $X$ that contain $\\mathcal{A}$.-/\n", "formal_statement": "theorem exercise_13_5b {X : Type*}\n [t : TopologicalSpace X] (A : Set (Set X)) (hA : t = generateFrom A) :\n generateFrom A = generateFrom (sInter {T | is_topology X T ∧ A ⊆ T}) :=", "goal": "X : Type u_1\nt : TopologicalSpace X\nA : Set (Set X)\nhA : t = generateFrom A\n⊢ generateFrom A = generateFrom (⋂₀ {T | is_topology X T ∧ A ⊆ T})", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef is_topology (X : Type*) (T : Set (Set X)) :=\n univ ∈ T ∧\n (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧\n (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)\n\n"}
{"name": "exercise_13_6", "split": "valid", "informal_prefix": "/-- Show that the lower limit topology $\\mathbb{R}_l$ and $K$-topology $\\mathbb{R}_K$ are not comparable.-/\n", "formal_statement": "theorem exercise_13_6 :\n ¬ (∀ U, Rl.IsOpen U → K_topology.IsOpen U) ∧ ¬ (∀ U, K_topology.IsOpen U → Rl.IsOpen U) :=", "goal": "⊢ (¬∀ (U : Set ), TopologicalSpace.IsOpen U → TopologicalSpace.IsOpen U) ∧\n ¬∀ (U : Set ), TopologicalSpace.IsOpen U → TopologicalSpace.IsOpen U", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef lower_limit_topology (X : Type) [Preorder X] :=\n generateFrom {S : Set X | ∃ a b, a < b ∧ S = Ico a b}\n\ndef Rl := lower_limit_topology \n\ndef K : Set := {r | ∃ n : , r = 1 / n}\n\ndef K_topology := generateFrom\n ({S : Set | ∃ a b, a < b ∧ S = Ioo a b} {S : Set | ∃ a b, a < b ∧ S = Ioo a b \\ K})\n\n"}
{"name": "exercise_13_8a", "split": "test", "informal_prefix": "/-- Show that the collection $\\{(a,b) \\mid a < b, a \\text{ and } b \\text{ rational}\\}$ is a basis that generates the standard topology on $\\mathbb{R}$.-/\n", "formal_statement": "theorem exercise_13_8a :\n IsTopologicalBasis {S : Set | ∃ a b : , a < b ∧ S = Ioo ↑a ↑b} :=", "goal": "⊢ IsTopologicalBasis {S | ∃ a b, a < b ∧ S = Ioo ↑a ↑b}", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_13_8b", "split": "valid", "informal_prefix": "/-- Show that the collection $\\{(a,b) \\mid a < b, a \\text{ and } b \\text{ rational}\\}$ is a basis that generates a topology different from the lower limit topology on $\\mathbb{R}$.-/\n", "formal_statement": "theorem exercise_13_8b :\n (generateFrom {S : Set | ∃ a b : , a < b ∧ S = Ico ↑a ↑b}).IsOpen ≠\n (lower_limit_topology ).IsOpen :=", "goal": "⊢ TopologicalSpace.IsOpen ≠ TopologicalSpace.IsOpen", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef lower_limit_topology (X : Type) [Preorder X] :=\n generateFrom {S : Set X | ∃ a b, a < b ∧ S = Ico a b}\n\n"}
{"name": "exercise_16_1", "split": "test", "informal_prefix": "/-- Show that if $Y$ is a subspace of $X$, and $A$ is a subset of $Y$, then the topology $A$ inherits as a subspace of $Y$ is the same as the topology it inherits as a subspace of $X$.-/\n", "formal_statement": "theorem exercise_16_1 {X : Type*} [TopologicalSpace X]\n (Y : Set X)\n (A : Set Y) :\n ∀ U : Set A, IsOpen U ↔ IsOpen (Subtype.val '' U) :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nY : Set X\nA : Set ↑Y\n⊢ ∀ (U : Set ↑A), IsOpen U ↔ IsOpen (Subtype.val '' U)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_16_4", "split": "valid", "informal_prefix": "/-- A map $f: X \\rightarrow Y$ is said to be an open map if for every open set $U$ of $X$, the set $f(U)$ is open in $Y$. Show that $\\pi_{1}: X \\times Y \\rightarrow X$ and $\\pi_{2}: X \\times Y \\rightarrow Y$ are open maps.-/\n", "formal_statement": "theorem exercise_16_4 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y]\n (π₁ : X × Y → X)\n (π₂ : X × Y → Y)\n (h₁ : π₁ = Prod.fst)\n (h₂ : π₂ = Prod.snd) :\n IsOpenMap π₁ ∧ IsOpenMap π₂ :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nπ₁ : X × Y → X\nπ₂ : X × Y → Y\nh₁ : π₁ = Prod.fst\nh₂ : π₂ = Prod.snd\n⊢ IsOpenMap π₁ ∧ IsOpenMap π₂", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_16_6", "split": "test", "informal_prefix": "/-- Show that the countable collection \\[\\{(a, b) \\times (c, d) \\mid a < b \\text{ and } c < d, \\text{ and } a, b, c, d \\text{ are rational}\\}\\] is a basis for $\\mathbb{R}^2$.-/\n", "formal_statement": "theorem exercise_16_6\n (S : Set (Set ( × )))\n (hS : ∀ s, s ∈ S → ∃ a b c d, (rational a ∧ rational b ∧ rational c ∧ rational d\n ∧ s = {x | ∃ x₁ x₂, x = (x₁, x₂) ∧ a < x₁ ∧ x₁ < b ∧ c < x₂ ∧ x₂ < d})) :\n IsTopologicalBasis S :=", "goal": "S : Set (Set ( × ))\nhS :\n ∀ s ∈ S,\n ∃ a b c d,\n rational a ∧\n rational b ∧ rational c ∧ rational d ∧ s = {x | ∃ x₁ x₂, x = (x₁, x₂) ∧ a < x₁ ∧ x₁ < b ∧ c < x₂ ∧ x₂ < d}\n⊢ IsTopologicalBasis S", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef rational (x : ) := x ∈ range ((↑) : )\n\n"}
{"name": "exercise_17_4", "split": "valid", "informal_prefix": "/-- Show that if $U$ is open in $X$ and $A$ is closed in $X$, then $U-A$ is open in $X$, and $A-U$ is closed in $X$.-/\n", "formal_statement": "theorem exercise_17_4 {X : Type*} [TopologicalSpace X]\n (U A : Set X) (hU : IsOpen U) (hA : IsClosed A) :\n IsOpen (U \\ A) ∧ IsClosed (A \\ U) :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nU A : Set X\nhU : IsOpen U\nhA : IsClosed A\n⊢ IsOpen (U \\ A) ∧ IsClosed (A \\ U)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_18_8a", "split": "test", "informal_prefix": "/-- Let $Y$ be an ordered set in the order topology. Let $f, g: X \\rightarrow Y$ be continuous. Show that the set $\\{x \\mid f(x) \\leq g(x)\\}$ is closed in $X$.-/\n", "formal_statement": "theorem exercise_18_8a {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y]\n [LinearOrder Y] [OrderTopology Y] {f g : X → Y}\n (hf : Continuous f) (hg : Continuous g) :\n IsClosed {x | f x ≤ g x} :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace Y\ninst✝¹ : LinearOrder Y\ninst✝ : OrderTopology Y\nf g : X → Y\nhf : Continuous f\nhg : Continuous g\n⊢ IsClosed {x | f x ≤ g x}", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_18_8b", "split": "valid", "informal_prefix": "/-- Let $Y$ be an ordered set in the order topology. Let $f, g: X \\rightarrow Y$ be continuous. Let $h: X \\rightarrow Y$ be the function $h(x)=\\min \\{f(x), g(x)\\}.$ Show that $h$ is continuous.-/\n", "formal_statement": "theorem exercise_18_8b {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y]\n [LinearOrder Y] [OrderTopology Y] {f g : X → Y}\n (hf : Continuous f) (hg : Continuous g) :\n Continuous (λ x => min (f x) (g x)) :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace Y\ninst✝¹ : LinearOrder Y\ninst✝ : OrderTopology Y\nf g : X → Y\nhf : Continuous f\nhg : Continuous g\n⊢ Continuous fun x => min (f x) (g x)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_18_13", "split": "test", "informal_prefix": "/-- Let $A \\subset X$; let $f: A \\rightarrow Y$ be continuous; let $Y$ be Hausdorff. Show that if $f$ may be extended to a continuous function $g: \\bar{A} \\rightarrow Y$, then $g$ is uniquely determined by $f$.-/\n", "formal_statement": "theorem exercise_18_13\n {X : Type*} [TopologicalSpace X] {Y : Type*} [TopologicalSpace Y]\n [T2Space Y] {A : Set X} {f : A → Y} (hf : Continuous f)\n (g : closure A → Y)\n (g_con : Continuous g) :\n ∀ (g' : closure A → Y), Continuous g' → (∀ (x : closure A), g x = g' x) :=", "goal": "X : Type u_1\ninst✝² : TopologicalSpace X\nY : Type u_2\ninst✝¹ : TopologicalSpace Y\ninst✝ : T2Space Y\nA : Set X\nf : ↑A → Y\nhf : Continuous f\ng : ↑(closure A) → Y\ng_con : Continuous g\n⊢ ∀ (g' : ↑(closure A) → Y), Continuous g' → ∀ (x : ↑(closure A)), g x = g' x", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_19_6a", "split": "valid", "informal_prefix": "/-- Let $\\mathbf{x}_1, \\mathbf{x}_2, \\ldots$ be a sequence of the points of the product space $\\prod X_\\alpha$. Show that this sequence converges to the point $\\mathbf{x}$ if and only if the sequence $\\pi_\\alpha(\\mathbf{x}_i)$ converges to $\\pi_\\alpha(\\mathbf{x})$ for each $\\alpha$.-/\n", "formal_statement": "theorem exercise_19_6a\n {n : }\n {f : Fin n → Type*} {x : → Πa, f a}\n (y : Πi, f i)\n [Πa, TopologicalSpace (f a)] :\n Tendsto x atTop (𝓝 y) ↔ ∀ i, Tendsto (λ j => (x j) i) atTop (𝓝 (y i)) :=", "goal": "n : \nf : Fin n → Type u_1\nx : → (a : Fin n) → f a\ny : (i : Fin n) → f i\ninst✝ : (a : Fin n) → TopologicalSpace (f a)\n⊢ Tendsto x atTop (𝓝 y) ↔ ∀ (i : Fin n), Tendsto (fun j => x j i) atTop (𝓝 (y i))", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_20_2", "split": "test", "informal_prefix": "/-- Show that $\\mathbb{R} \\times \\mathbb{R}$ in the dictionary order topology is metrizable.-/\n", "formal_statement": "theorem exercise_20_2\n [TopologicalSpace ( ×ₗ )] [OrderTopology ( ×ₗ )]\n : MetrizableSpace ( ×ₗ ) :=", "goal": "inst✝¹ : TopologicalSpace (Lex ( × ))\ninst✝ : OrderTopology (Lex ( × ))\n⊢ MetrizableSpace (Lex ( × ))", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_21_6a", "split": "valid", "informal_prefix": "/-- Define $f_{n}:[0,1] \\rightarrow \\mathbb{R}$ by the equation $f_{n}(x)=x^{n}$. Show that the sequence $\\left(f_{n}(x)\\right)$ converges for each $x \\in[0,1]$.-/\n", "formal_statement": "theorem exercise_21_6a\n (f : → I → )\n (h : ∀ x n, f n x = x ^ n) :\n ∀ x, ∃ y, Tendsto (λ n => f n x) atTop (𝓝 y) :=", "goal": "f : → ↑I → \nh : ∀ (x : ↑I) (n : ), f n x = ↑x ^ n\n⊢ ∀ (x : ↑I), ∃ y, Tendsto (fun n => f n x) atTop (𝓝 y)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\nabbrev I : Set := Icc 0 1\n\n"}
{"name": "exercise_21_6b", "split": "test", "informal_prefix": "/-- Define $f_{n}:[0,1] \\rightarrow \\mathbb{R}$ by the equation $f_{n}(x)=x^{n}$. Show that the sequence $\\left(f_{n}\\right)$ does not converge uniformly.-/\n", "formal_statement": "theorem exercise_21_6b\n (f : → I → )\n (h : ∀ x n, f n x = x ^ n) :\n ¬ ∃ f₀, TendstoUniformly f f₀ atTop :=", "goal": "f : → ↑I → \nh : ∀ (x : ↑I) (n : ), f n x = ↑x ^ n\n⊢ ¬∃ f₀, TendstoUniformly f f₀ atTop", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\nabbrev I : Set := Icc 0 1\n\n"}
{"name": "exercise_21_8", "split": "valid", "informal_prefix": "/-- Let $X$ be a topological space and let $Y$ be a metric space. Let $f_{n}: X \\rightarrow Y$ be a sequence of continuous functions. Let $x_{n}$ be a sequence of points of $X$ converging to $x$. Show that if the sequence $\\left(f_{n}\\right)$ converges uniformly to $f$, then $\\left(f_{n}\\left(x_{n}\\right)\\right)$ converges to $f(x)$.-/\n", "formal_statement": "theorem exercise_21_8\n {X : Type*} [TopologicalSpace X] {Y : Type*} [MetricSpace Y]\n {f : → X → Y} {x : → X}\n (hf : ∀ n, Continuous (f n))\n (x₀ : X)\n (hx : Tendsto x atTop (𝓝 x₀))\n (f₀ : X → Y)\n (hh : TendstoUniformly f f₀ atTop) :\n Tendsto (λ n => f n (x n)) atTop (𝓝 (f₀ x₀)) :=", "goal": "X : Type u_1\ninst✝¹ : TopologicalSpace X\nY : Type u_2\ninst✝ : MetricSpace Y\nf : → X → Y\nx : → X\nhf : ∀ (n : ), Continuous (f n)\nx₀ : X\nhx : Tendsto x atTop (𝓝 x₀)\nf₀ : X → Y\nhh : TendstoUniformly f f₀ atTop\n⊢ Tendsto (fun n => f n (x n)) atTop (𝓝 (f₀ x₀))", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_22_2a", "split": "test", "informal_prefix": "/-- Let $p: X \\rightarrow Y$ be a continuous map. Show that if there is a continuous map $f: Y \\rightarrow X$ such that $p \\circ f$ equals the identity map of $Y$, then $p$ is a quotient map.-/\n", "formal_statement": "theorem exercise_22_2a {X Y : Type*} [TopologicalSpace X]\n [TopologicalSpace Y] (p : X → Y) (h : Continuous p) :\n QuotientMap p ↔ ∃ (f : Y → X), Continuous f ∧ p ∘ f = id :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\np : X → Y\nh : Continuous p\n⊢ QuotientMap p ↔ ∃ f, Continuous f ∧ p ∘ f = id", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_22_2b", "split": "valid", "informal_prefix": "/-- If $A \\subset X$, a retraction of $X$ onto $A$ is a continuous map $r: X \\rightarrow A$ such that $r(a)=a$ for each $a \\in A$. Show that a retraction is a quotient map.-/\n", "formal_statement": "theorem exercise_22_2b {X : Type*} [TopologicalSpace X]\n {A : Set X} (r : X → A) (hr : Continuous r) (h : ∀ x : A, r x = x) :\n QuotientMap r :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nA : Set X\nr : X → ↑A\nhr : Continuous r\nh : ∀ (x : ↑A), r ↑x = x\n⊢ QuotientMap r", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_22_5", "split": "test", "informal_prefix": "/-- Let $p \\colon X \\rightarrow Y$ be an open map. Show that if $A$ is open in $X$, then the map $q \\colon A \\rightarrow p(A)$ obtained by restricting $p$ is an open map.-/\n", "formal_statement": "theorem exercise_22_5 {X Y : Type*} [TopologicalSpace X]\n [TopologicalSpace Y] (p : X → Y) (hp : IsOpenMap p)\n (A : Set X) (hA : IsOpen A) : IsOpenMap (p ∘ Subtype.val : A → Y) :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\np : X → Y\nhp : IsOpenMap p\nA : Set X\nhA : IsOpen A\n⊢ IsOpenMap (p ∘ Subtype.val)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_23_2", "split": "valid", "informal_prefix": "/-- Let $\\left\\{A_{n}\\right\\}$ be a sequence of connected subspaces of $X$, such that $A_{n} \\cap A_{n+1} \\neq \\varnothing$ for all $n$. Show that $\\bigcup A_{n}$ is connected.-/\n", "formal_statement": "theorem exercise_23_2 {X : Type*}\n [TopologicalSpace X] {A : → Set X} (hA : ∀ n, IsConnected (A n))\n (hAn : ∀ n, A n ∩ A (n + 1) ≠ ∅) :\n IsConnected ( n, A n) :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nA : → Set X\nhA : ∀ (n : ), IsConnected (A n)\nhAn : ∀ (n : ), A n ∩ A (n + 1) ≠ ∅\n⊢ IsConnected ( n, A n)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_23_3", "split": "test", "informal_prefix": "/-- Let $\\left\\{A_{\\alpha}\\right\\}$ be a collection of connected subspaces of $X$; let $A$ be a connected subset of $X$. Show that if $A \\cap A_{\\alpha} \\neq \\varnothing$ for all $\\alpha$, then $A \\cup\\left(\\bigcup A_{\\alpha}\\right)$ is connected.-/\n", "formal_statement": "theorem exercise_23_3 {X : Type*} [TopologicalSpace X]\n [TopologicalSpace X] {A : → Set X}\n (hAn : ∀ n, IsConnected (A n))\n (A₀ : Set X)\n (hA : IsConnected A₀)\n (h : ∀ n, A₀ ∩ A n ≠ ∅) :\n IsConnected (A₀ ( n, A n)) :=", "goal": "X : Type u_1\ninst✝¹ inst✝ : TopologicalSpace X\nA : → Set X\nhAn : ∀ (n : ), IsConnected (A n)\nA₀ : Set X\nhA : IsConnected A₀\nh : ∀ (n : ), A₀ ∩ A n ≠ ∅\n⊢ IsConnected (A₀ n, A n)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_23_4", "split": "valid", "informal_prefix": "/-- Show that if $X$ is an infinite set, it is connected in the finite complement topology.-/\n", "formal_statement": "theorem exercise_23_4 {X : Type*} [TopologicalSpace X] [CofiniteTopology X]\n (s : Set X) : Infinite s → IsConnected s :=", "goal": "X : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : CofiniteTopology X\ns : Set X\n⊢ Infinite ↑s → IsConnected s", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\nset_option checkBinderAnnotations false\n\n"}
{"name": "exercise_23_6", "split": "test", "informal_prefix": "/-- Let $A \\subset X$. Show that if $C$ is a connected subspace of $X$ that intersects both $A$ and $X-A$, then $C$ intersects $\\operatorname{Bd} A$.-/\n", "formal_statement": "theorem exercise_23_6 {X : Type*}\n [TopologicalSpace X] {A C : Set X} (hc : IsConnected C)\n (hCA : C ∩ A ≠ ∅) (hCXA : C ∩ Aᶜ ≠ ∅) :\n C ∩ (frontier A) ≠ ∅ :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nA C : Set X\nhc : IsConnected C\nhCA : C ∩ A ≠ ∅\nhCXA : C ∩ Aᶜ ≠ ∅\n⊢ C ∩ frontier A ≠ ∅", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_23_9", "split": "valid", "informal_prefix": "/-- Let $A$ be a proper subset of $X$, and let $B$ be a proper subset of $Y$. If $X$ and $Y$ are connected, show that $(X \\times Y)-(A \\times B)$ is connected.-/\n", "formal_statement": "theorem exercise_23_9 {X Y : Type*}\n [TopologicalSpace X] [TopologicalSpace Y]\n (A₁ A₂ : Set X)\n (B₁ B₂ : Set Y)\n (hA : A₁ ⊂ A₂)\n (hB : B₁ ⊂ B₂)\n (hA : IsConnected A₂)\n (hB : IsConnected B₂) :\n IsConnected ({x | ∃ a b, x = (a, b) ∧ a ∈ A₂ ∧ b ∈ B₂} \\\n {x | ∃ a b, x = (a, b) ∧ a ∈ A₁ ∧ b ∈ B₁}) :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nA₁ A₂ : Set X\nB₁ B₂ : Set Y\nhA✝ : A₁ ⊂ A₂\nhB✝ : B₁ ⊂ B₂\nhA : IsConnected A₂\nhB : IsConnected B₂\n⊢ IsConnected ({x | ∃ a b, x = (a, b) ∧ a ∈ A₂ ∧ b ∈ B₂} \\ {x | ∃ a b, x = (a, b) ∧ a ∈ A₁ ∧ b ∈ B₁})", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_23_11", "split": "test", "informal_prefix": "/-- Let $p: X \\rightarrow Y$ be a quotient map. Show that if each set $p^{-1}(\\{y\\})$ is connected, and if $Y$ is connected, then $X$ is connected.-/\n", "formal_statement": "theorem exercise_23_11 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y]\n (p : X → Y) (hq : QuotientMap p)\n (hY : ConnectedSpace Y) (hX : ∀ y : Y, IsConnected (p ⁻¹' {y})) :\n ConnectedSpace X :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\np : X → Y\nhq : QuotientMap p\nhY : ConnectedSpace Y\nhX : ∀ (y : Y), IsConnected (p ⁻¹' {y})\n⊢ ConnectedSpace X", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_24_2", "split": "valid", "informal_prefix": "/-- Let $f: S^{1} \\rightarrow \\mathbb{R}$ be a continuous map. Show there exists a point $x$ of $S^{1}$ such that $f(x)=f(-x)$.-/\n", "formal_statement": "theorem exercise_24_2 {f : (Metric.sphere 0 1 : Set ) → }\n (hf : Continuous f) : ∃ x, f x = f (-x) :=", "goal": "f : ↑(Metric.sphere 0 1) → \nhf : Continuous f\n⊢ ∃ x, f x = f (-x)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_24_3a", "split": "test", "informal_prefix": "/-- Let $f \\colon X \\rightarrow X$ be continuous. Show that if $X = [0, 1]$, there is a point $x$ such that $f(x) = x$. (The point $x$ is called a fixed point of $f$.)-/\n", "formal_statement": "theorem exercise_24_3a [TopologicalSpace I] [CompactSpace I]\n (f : I → I) (hf : Continuous f) :\n ∃ (x : I), f x = x :=", "goal": "I : Type u_1\ninst✝¹ : TopologicalSpace I\ninst✝ : CompactSpace I\nf : I → I\nhf : Continuous f\n⊢ ∃ x, f x = x", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_25_4", "split": "valid", "informal_prefix": "/-- Let $X$ be locally path connected. Show that every connected open set in $X$ is path connected.-/\n", "formal_statement": "theorem exercise_25_4 {X : Type*} [TopologicalSpace X]\n [LocPathConnectedSpace X] (U : Set X) (hU : IsOpen U)\n (hcU : IsConnected U) : IsPathConnected U :=", "goal": "X : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : LocPathConnectedSpace X\nU : Set X\nhU : IsOpen U\nhcU : IsConnected U\n⊢ IsPathConnected U", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_25_9", "split": "test", "informal_prefix": "/-- Let $G$ be a topological group; let $C$ be the component of $G$ containing the identity element $e$. Show that $C$ is a normal subgroup of $G$.-/\n", "formal_statement": "theorem exercise_25_9 {G : Type*} [TopologicalSpace G] [Group G]\n [TopologicalGroup G] (C : Set G) (h : C = connectedComponent 1) :\n IsNormalSubgroup C :=", "goal": "G : Type u_1\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : TopologicalGroup G\nC : Set G\nh : C = connectedComponent 1\n⊢ IsNormalSubgroup C", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_26_11", "split": "valid", "informal_prefix": "/-- Let $X$ be a compact Hausdorff space. Let $\\mathcal{A}$ be a collection of closed connected subsets of $X$ that is simply ordered by proper inclusion. Then $Y=\\bigcap_{A \\in \\mathcal{A}} A$ is connected.-/\n", "formal_statement": "theorem exercise_26_11\n {X : Type*} [TopologicalSpace X] [CompactSpace X] [T2Space X]\n (A : Set (Set X)) (hA : ∀ (a b : Set X), a ∈ A → b ∈ A → a ⊆ b b ⊆ a)\n (hA' : ∀ a ∈ A, IsClosed a) (hA'' : ∀ a ∈ A, IsConnected a) :\n IsConnected (⋂₀ A) :=", "goal": "X : Type u_1\ninst✝² : TopologicalSpace X\ninst✝¹ : CompactSpace X\ninst✝ : T2Space X\nA : Set (Set X)\nhA : ∀ (a b : Set X), a ∈ A → b ∈ A → a ⊆ b b ⊆ a\nhA' : ∀ a ∈ A, IsClosed a\nhA'' : ∀ a ∈ A, IsConnected a\n⊢ IsConnected (⋂₀ A)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_26_12", "split": "test", "informal_prefix": "/-- Let $p: X \\rightarrow Y$ be a closed continuous surjective map such that $p^{-1}(\\{y\\})$ is compact, for each $y \\in Y$. (Such a map is called a perfect map.) Show that if $Y$ is compact, then $X$ is compact.-/\n", "formal_statement": "theorem exercise_26_12 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y]\n (p : X → Y) (h : Function.Surjective p) (hc : Continuous p) (hp : ∀ y, IsCompact (p ⁻¹' {y}))\n (hY : CompactSpace Y) : CompactSpace X :=", "goal": "X : Type u_1\nY : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\np : X → Y\nh : Function.Surjective p\nhc : Continuous p\nhp : ∀ (y : Y), IsCompact (p ⁻¹' {y})\nhY : CompactSpace Y\n⊢ CompactSpace X", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_27_4", "split": "valid", "informal_prefix": "/-- Show that a connected metric space having more than one point is uncountable.-/\n", "formal_statement": "theorem exercise_27_4\n {X : Type*} [MetricSpace X] [ConnectedSpace X] (hX : ∃ x y : X, x ≠ y) :\n ¬ Countable (univ : Set X) :=", "goal": "X : Type u_1\ninst✝¹ : MetricSpace X\ninst✝ : ConnectedSpace X\nhX : ∃ x y, x ≠ y\n⊢ ¬Countable ↑univ", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_28_4", "split": "test", "informal_prefix": "/-- A space $X$ is said to be countably compact if every countable open covering of $X$ contains a finite subcollection that covers $X$. Show that for a $T_1$ space $X$, countable compactness is equivalent to limit point compactness.-/\n", "formal_statement": "theorem exercise_28_4 {X : Type*}\n [TopologicalSpace X] (hT1 : T1Space X) :\n countably_compact X ↔ limit_point_compact X :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nhT1 : T1Space X\n⊢ countably_compact X ↔ limit_point_compact X", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef countably_compact (X : Type*) [TopologicalSpace X] :=\n ∀ U : → Set X,\n (∀ i, IsOpen (U i)) ∧ ((univ : Set X) ⊆ i, U i) →\n (∃ t : Finset , (univ : Set X) ⊆ i ∈ t, U i)\n\ndef limit_point_compact (X : Type*) [TopologicalSpace X] :=\n ∀ U : Set X, Infinite U → ∃ x ∈ U, ClusterPt x (𝓟 U)\n\n"}
{"name": "exercise_28_5", "split": "valid", "informal_prefix": "/-- Show that X is countably compact if and only if every nested sequence $C_1 \\supset C_2 \\supset \\cdots$ of closed nonempty sets of X has a nonempty intersection.-/\n", "formal_statement": "theorem exercise_28_5\n (X : Type*) [TopologicalSpace X] :\n countably_compact X ↔ ∀ (C : → Set X), (∀ n, IsClosed (C n)) ∧\n (∀ n, C n ≠ ∅) ∧ (∀ n, C n ⊆ C (n + 1)) → ∃ x, ∀ n, x ∈ C n :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\n⊢ countably_compact X ↔\n ∀ (C : → Set X),\n ((∀ (n : ), IsClosed (C n)) ∧ (∀ (n : ), C n ≠ ∅) ∧ ∀ (n : ), C n ⊆ C (n + 1)) → ∃ x, ∀ (n : ), x ∈ C n", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\ndef countably_compact (X : Type*) [TopologicalSpace X] :=\n ∀ U : → Set X,\n (∀ i, IsOpen (U i)) ∧ ((univ : Set X) ⊆ i, U i) →\n (∃ t : Finset , (univ : Set X) ⊆ i ∈ t, U i)\n\n"}
{"name": "exercise_28_6", "split": "test", "informal_prefix": "/-- Let $(X, d)$ be a metric space. If $f: X \\rightarrow X$ satisfies the condition $d(f(x), f(y))=d(x, y)$ for all $x, y \\in X$, then $f$ is called an isometry of $X$. Show that if $f$ is an isometry and $X$ is compact, then $f$ is bijective and hence a homeomorphism.-/\n", "formal_statement": "theorem exercise_28_6 {X : Type*} [MetricSpace X]\n [CompactSpace X] {f : X → X} (hf : Isometry f) :\n Function.Bijective f :=", "goal": "X : Type u_1\ninst✝¹ : MetricSpace X\ninst✝ : CompactSpace X\nf : X → X\nhf : Isometry f\n⊢ Function.Bijective f", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_29_1", "split": "valid", "informal_prefix": "/-- Show that the rationals $\\mathbb{Q}$ are not locally compact.-/\n", "formal_statement": "theorem exercise_29_1 : ¬ LocallyCompactSpace :=", "goal": "⊢ ¬LocallyCompactSpace ", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_29_4", "split": "test", "informal_prefix": "/-- Show that $[0, 1]^\\omega$ is not locally compact in the uniform topology.-/\n", "formal_statement": "theorem exercise_29_4 [TopologicalSpace ( → I)] :\n ¬ LocallyCompactSpace ( → I) :=", "goal": "inst✝ : TopologicalSpace ( → ↑I)\n⊢ ¬LocallyCompactSpace ( → ↑I)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\nabbrev I : Set := Icc 0 1\n\n"}
{"name": "exercise_29_10", "split": "valid", "informal_prefix": "/-- Show that if $X$ is a Hausdorff space that is locally compact at the point $x$, then for each neighborhood $U$ of $x$, there is a neighborhood $V$ of $x$ such that $\\bar{V}$ is compact and $\\bar{V} \\subset U$.-/\n", "formal_statement": "theorem exercise_29_10 {X : Type*}\n [TopologicalSpace X] [T2Space X] (x : X)\n (hx : ∃ U : Set X, x ∈ U ∧ IsOpen U ∧ (∃ K : Set X, U ⊂ K ∧ IsCompact K))\n (U : Set X) (hU : IsOpen U) (hxU : x ∈ U) :\n ∃ (V : Set X), IsOpen V ∧ x ∈ V ∧ IsCompact (closure V) ∧ closure V ⊆ U :=", "goal": "X : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : T2Space X\nx : X\nhx : ∃ U, x ∈ U ∧ IsOpen U ∧ ∃ K, U ⊂ K ∧ IsCompact K\nU : Set X\nhU : IsOpen U\nhxU : x ∈ U\n⊢ ∃ V, IsOpen V ∧ x ∈ V ∧ IsCompact (closure V) ∧ closure V ⊆ U", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_30_10", "split": "test", "informal_prefix": "/-- Show that if $X$ is a countable product of spaces having countable dense subsets, then $X$ has a countable dense subset.-/\n", "formal_statement": "theorem exercise_30_10\n {X : → Type*} [∀ i, TopologicalSpace (X i)]\n (h : ∀ i, ∃ (s : Set (X i)), Countable s ∧ Dense s) :\n ∃ (s : Set (Π i, X i)), Countable s ∧ Dense s :=", "goal": "X : → Type u_1\ninst✝ : (i : ) → TopologicalSpace (X i)\nh : ∀ (i : ), ∃ s, Countable ↑s ∧ Dense s\n⊢ ∃ s, Countable ↑s ∧ Dense s", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_30_13", "split": "valid", "informal_prefix": "/-- Show that if $X$ has a countable dense subset, every collection of disjoint open sets in $X$ is countable.-/\n", "formal_statement": "theorem exercise_30_13 {X : Type*} [TopologicalSpace X]\n (h : ∃ (s : Set X), Countable s ∧ Dense s) (U : Set (Set X))\n (hU : ∀ (x y : Set X), x ∈ U → y ∈ U → x ≠ y → x ∩ y = ∅) :\n Countable U :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nh : ∃ s, Countable ↑s ∧ Dense s\nU : Set (Set X)\nhU : ∀ (x y : Set X), x ∈ U → y ∈ U → x ≠ y → x ∩ y = ∅\n⊢ Countable ↑U", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_31_1", "split": "test", "informal_prefix": "/-- Show that if $X$ is regular, every pair of points of $X$ have neighborhoods whose closures are disjoint.-/\n", "formal_statement": "theorem exercise_31_1 {X : Type*} [TopologicalSpace X]\n (hX : RegularSpace X) (x y : X) :\n ∃ (U V : Set X), IsOpen U ∧ IsOpen V ∧ x ∈ U ∧ y ∈ V ∧ closure U ∩ closure V = ∅ :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nhX : RegularSpace X\nx y : X\n⊢ ∃ U V, IsOpen U ∧ IsOpen V ∧ x ∈ U ∧ y ∈ V ∧ closure U ∩ closure V = ∅", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_31_2", "split": "valid", "informal_prefix": "/-- Show that if $X$ is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.-/\n", "formal_statement": "theorem exercise_31_2 {X : Type*}\n [TopologicalSpace X] [NormalSpace X] {A B : Set X}\n (hA : IsClosed A) (hB : IsClosed B) (hAB : Disjoint A B) :\n ∃ (U V : Set X), IsOpen U ∧ IsOpen V ∧ A ⊆ U ∧ B ⊆ V ∧ closure U ∩ closure V = ∅ :=", "goal": "X : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : NormalSpace X\nA B : Set X\nhA : IsClosed A\nhB : IsClosed B\nhAB : Disjoint A B\n⊢ ∃ U V, IsOpen U ∧ IsOpen V ∧ A ⊆ U ∧ B ⊆ V ∧ closure U ∩ closure V = ∅", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_31_3", "split": "test", "informal_prefix": "/-- Show that every order topology is regular.-/\n", "formal_statement": "theorem exercise_31_3 {α : Type*} [PartialOrder α]\n [TopologicalSpace α] (h : OrderTopology α) : RegularSpace α :=", "goal": "α : Type u_1\ninst✝¹ : PartialOrder α\ninst✝ : TopologicalSpace α\nh : OrderTopology α\n⊢ RegularSpace α", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_32_1", "split": "valid", "informal_prefix": "/-- Show that a closed subspace of a normal space is normal.-/\n", "formal_statement": "theorem exercise_32_1 {X : Type*} [TopologicalSpace X]\n (hX : NormalSpace X) (A : Set X) (hA : IsClosed A) :\n NormalSpace {x // x ∈ A} :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nhX : NormalSpace X\nA : Set X\nhA : IsClosed A\n⊢ NormalSpace { x // x ∈ A }", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_32_2a", "split": "test", "informal_prefix": "/-- Show that if $\\prod X_\\alpha$ is Hausdorff, then so is $X_\\alpha$. Assume that each $X_\\alpha$ is nonempty.-/\n", "formal_statement": "theorem exercise_32_2a\n {ι : Type*} {X : ι → Type*} [∀ i, TopologicalSpace (X i)]\n (h : ∀ i, Nonempty (X i)) (h2 : T2Space (Π i, X i)) :\n ∀ i, T2Space (X i) :=", "goal": "ι : Type u_1\nX : ι → Type u_2\ninst✝ : (i : ι) → TopologicalSpace (X i)\nh : ∀ (i : ι), Nonempty (X i)\nh2 : T2Space ((i : ι) → X i)\n⊢ ∀ (i : ι), T2Space (X i)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_32_2b", "split": "valid", "informal_prefix": "/-- Show that if $\\prod X_\\alpha$ is regular, then so is $X_\\alpha$. Assume that each $X_\\alpha$ is nonempty.-/\n", "formal_statement": "theorem exercise_32_2b\n {ι : Type*} {X : ι → Type*} [∀ i, TopologicalSpace (X i)]\n (h : ∀ i, Nonempty (X i)) (h2 : RegularSpace (Π i, X i)) :\n ∀ i, RegularSpace (X i) :=", "goal": "ι : Type u_1\nX : ι → Type u_2\ninst✝ : (i : ι) → TopologicalSpace (X i)\nh : ∀ (i : ι), Nonempty (X i)\nh2 : RegularSpace ((i : ι) → X i)\n⊢ ∀ (i : ι), RegularSpace (X i)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_32_2c", "split": "test", "informal_prefix": "/-- Show that if $\\prod X_\\alpha$ is normal, then so is $X_\\alpha$. Assume that each $X_\\alpha$ is nonempty.-/\n", "formal_statement": "theorem exercise_32_2c\n {ι : Type*} {X : ι → Type*} [∀ i, TopologicalSpace (X i)]\n (h : ∀ i, Nonempty (X i)) (h2 : NormalSpace (Π i, X i)) :\n ∀ i, NormalSpace (X i) :=", "goal": "ι : Type u_1\nX : ι → Type u_2\ninst✝ : (i : ι) → TopologicalSpace (X i)\nh : ∀ (i : ι), Nonempty (X i)\nh2 : NormalSpace ((i : ι) → X i)\n⊢ ∀ (i : ι), NormalSpace (X i)", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_32_3", "split": "valid", "informal_prefix": "/-- Show that every locally compact Hausdorff space is regular.-/\n", "formal_statement": "theorem exercise_32_3 {X : Type*} [TopologicalSpace X]\n (hX : LocallyCompactSpace X) (hX' : T2Space X) :\n RegularSpace X :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nhX : LocallyCompactSpace X\nhX' : T2Space X\n⊢ RegularSpace X", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_33_7", "split": "test", "informal_prefix": "/-- Show that every locally compact Hausdorff space is completely regular.-/\n", "formal_statement": "theorem exercise_33_7 {X : Type*} [TopologicalSpace X]\n (hX : LocallyCompactSpace X) (hX' : T2Space X) :\n ∀ x A, IsClosed A ∧ ¬ x ∈ A →\n ∃ (f : X → I), Continuous f ∧ f x = 1 ∧ f '' A = {0} :=", "goal": "X : Type u_1\ninst✝ : TopologicalSpace X\nhX : LocallyCompactSpace X\nhX' : T2Space X\n⊢ ∀ (x : X) (A : Set X), IsClosed A ∧ x ∉ A → ∃ f, Continuous f ∧ f x = 1 ∧ f '' A = {0}", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\nabbrev I : Set := Icc 0 1\n\n"}
{"name": "exercise_33_8", "split": "valid", "informal_prefix": "/-- Let $X$ be completely regular, let $A$ and $B$ be disjoint closed subsets of $X$. Show that if $A$ is compact, there is a continuous function $f \\colon X \\rightarrow [0, 1]$ such that $f(A) = \\{0\\}$ and $f(B) = \\{1\\}$.-/\n", "formal_statement": "theorem exercise_33_8\n (X : Type*) [TopologicalSpace X] [RegularSpace X]\n (h : ∀ x A, IsClosed A ∧ ¬ x ∈ A →\n ∃ (f : X → I), Continuous f ∧ f x = (1 : I) ∧ f '' A = {0})\n (A B : Set X) (hA : IsClosed A) (hB : IsClosed B)\n (hAB : Disjoint A B)\n (hAc : IsCompact A) :\n ∃ (f : X → I), Continuous f ∧ f '' A = {0} ∧ f '' B = {1} :=", "goal": "X : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : RegularSpace X\nh : ∀ (x : X) (A : Set X), IsClosed A ∧ x ∉ A → ∃ f, Continuous f ∧ f x = 1 ∧ f '' A = {0}\nA B : Set X\nhA : IsClosed A\nhB : IsClosed B\nhAB : Disjoint A B\nhAc : IsCompact A\n⊢ ∃ f, Continuous f ∧ f '' A = {0} ∧ f '' B = {1}", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\nabbrev I : Set := Icc 0 1\n\n"}
{"name": "exercise_34_9", "split": "test", "informal_prefix": "/-- Let $X$ be a compact Hausdorff space that is the union of the closed subspaces $X_1$ and $X_2$. If $X_1$ and $X_2$ are metrizable, show that $X$ is metrizable.-/\n", "formal_statement": "theorem exercise_34_9\n (X : Type*) [TopologicalSpace X] [CompactSpace X]\n (X1 X2 : Set X) (hX1 : IsClosed X1) (hX2 : IsClosed X2)\n (hX : X1 X2 = univ) (hX1m : MetrizableSpace X1)\n (hX2m : MetrizableSpace X2) : MetrizableSpace X :=", "goal": "X : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : CompactSpace X\nX1 X2 : Set X\nhX1 : IsClosed X1\nhX2 : IsClosed X2\nhX : X1 X2 = univ\nhX1m : MetrizableSpace ↑X1\nhX2m : MetrizableSpace ↑X2\n⊢ MetrizableSpace X", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_38_6", "split": "valid", "informal_prefix": "/-- Let $X$ be completely regular. Show that $X$ is connected if and only if the Stone-Čech compactification of $X$ is connected.-/\n", "formal_statement": "theorem exercise_38_6 {X : Type*}\n (X : Type*) [TopologicalSpace X] [RegularSpace X]\n (h : ∀ x A, IsClosed A ∧ ¬ x ∈ A →\n ∃ (f : X → I), Continuous f ∧ f x = (1 : I) ∧ f '' A = {0}) :\n IsConnected (univ : Set X) ↔ IsConnected (univ : Set (StoneCech X)) :=", "goal": "X✝ : Type u_1\nX : Type u_2\ninst✝¹ : TopologicalSpace X\ninst✝ : RegularSpace X\nh : ∀ (x : X) (A : Set X), IsClosed A ∧ x ∉ A → ∃ f, Continuous f ∧ f x = 1 ∧ f '' A = {0}\n⊢ IsConnected univ ↔ IsConnected univ", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\nabbrev I : Set := Icc 0 1\n\n"}
{"name": "exercise_43_2", "split": "test", "informal_prefix": "/-- Let $(X, d_X)$ and $(Y, d_Y)$ be metric spaces; let $Y$ be complete. Let $A \\subset X$. Show that if $f \\colon A \\rightarrow Y$ is uniformly continuous, then $f$ can be uniquely extended to a continuous function $g \\colon \\bar{A} \\rightarrow Y$, and $g$ is uniformly continuous.-/\n", "formal_statement": "theorem exercise_43_2 {X : Type*} [MetricSpace X]\n {Y : Type*} [MetricSpace Y] [CompleteSpace Y] (A : Set X)\n (f : X → Y) (hf : UniformContinuousOn f A) :\n ∃! (g : X → Y), ContinuousOn g (closure A) ∧\n UniformContinuousOn g (closure A) ∧ ∀ (x : A), g x = f x :=", "goal": "X : Type u_1\ninst✝² : MetricSpace X\nY : Type u_2\ninst✝¹ : MetricSpace Y\ninst✝ : CompleteSpace Y\nA : Set X\nf : X → Y\nhf : UniformContinuousOn f A\n⊢ ∃! g, ContinuousOn g (closure A) ∧ UniformContinuousOn g (closure A) ∧ ∀ (x : ↑A), g ↑x = f ↑x", "header": "import Mathlib\n\nopen Filter Set TopologicalSpace\nopen scoped Topology\n\n"}
{"name": "exercise_1_27", "split": "valid", "informal_prefix": "/-- For all odd $n$ show that $8 \\mid n^{2}-1$.-/\n", "formal_statement": "theorem exercise_1_27 {n : } (hn : Odd n) : 8 (n^2 - 1) :=", "goal": "n : \nhn : Odd n\n⊢ 8 n ^ 2 - 1", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_30", "split": "test", "informal_prefix": "/-- Prove that $\\frac{1}{2}+\\frac{1}{3}+\\cdots+\\frac{1}{n}$ is not an integer.-/\n", "formal_statement": "theorem exercise_1_30 {n : } :\n ¬ ∃ a : , ∑ i : Fin n, (1 : ) / (n+2) = a :=", "goal": "n : \n⊢ ¬∃ a, ∑ i : Fin n, 1 / (↑n + 2) = ↑a", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_1_31", "split": "valid", "informal_prefix": "/-- Show that 2 is divisible by $(1+i)^{2}$ in $\\mathbb{Z}[i]$.-/\n", "formal_statement": "theorem exercise_1_31 : (⟨1, 1⟩ : GaussianInt) ^ 2 2 :=", "goal": "⊢ { re := 1, im := 1 } ^ 2 2", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_4", "split": "test", "informal_prefix": "/-- If $a$ is a nonzero integer, then for $n>m$ show that $\\left(a^{2^{n}}+1, a^{2^{m}}+1\\right)=1$ or 2 depending on whether $a$ is odd or even.-/\n", "formal_statement": "theorem exercise_2_4 {a : } (ha : a ≠ 0)\n (f_a := λ n m : => Int.gcd (a^(2^n) + 1) (a^(2^m)+1)) {n m : }\n (hnm : n > m) :\n (Odd a → f_a n m = 1) ∧ (Even a → f_a n m = 2) :=", "goal": "a : \nha : a ≠ 0\nf_a : optParam () fun n m => (a ^ 2 ^ n + 1).gcd (a ^ 2 ^ m + 1)\nn m : \nhnm : n > m\n⊢ (Odd a → f_a n m = 1) ∧ (Even a → f_a n m = 2)", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_21", "split": "valid", "informal_prefix": "/-- Define $\\wedge(n)=\\log p$ if $n$ is a power of $p$ and zero otherwise. Prove that $\\sum_{A \\mid n} \\mu(n / d) \\log d$ $=\\wedge(n)$.-/\n", "formal_statement": "theorem exercise_2_21 {l : }\n (hl : ∀ p n : , p.Prime → l (p^n) = log p )\n (hl1 : ∀ m : , ¬ IsPrimePow m → l m = 0) :\n l = λ n => ∑ d : Nat.divisors n, ArithmeticFunction.moebius (n/d) * log d :=", "goal": "l : \nhl : ∀ (p n : ), p.Prime → l (p ^ n) = (↑p).log\nhl1 : ∀ (m : ), ¬IsPrimePow m → l m = 0\n⊢ l = fun n => ∑ d : { x // x ∈ n.divisors }, ↑(ArithmeticFunction.moebius (n / ↑d)) * (↑↑d).log", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_2_27a", "split": "test", "informal_prefix": "/-- Show that $\\sum^{\\prime} 1 / n$, the sum being over square free integers, diverges.-/\n", "formal_statement": "theorem exercise_2_27a :\n ¬ Summable (λ i : {p : // Squarefree p} => (1 : ) / i) :=", "goal": "⊢ ¬Summable fun i => 1 / ↑↑i", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_1", "split": "valid", "informal_prefix": "/-- Show that there are infinitely many primes congruent to $-1$ modulo 6 .-/\n", "formal_statement": "theorem exercise_3_1 : Infinite {p : Nat.Primes // p ≡ -1 [ZMOD 6]} :=", "goal": "⊢ Infinite { p // ↑↑p ≡ -1 [ZMOD 6] }", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_4", "split": "test", "informal_prefix": "/-- Show that the equation $3 x^{2}+2=y^{2}$ has no solution in integers.-/\n", "formal_statement": "theorem exercise_3_4 : ¬ ∃ x y : , 3*x^2 + 2 = y^2 :=", "goal": "⊢ ¬∃ x y, 3 * x ^ 2 + 2 = y ^ 2", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_5", "split": "valid", "informal_prefix": "/-- Show that the equation $7 x^{3}+2=y^{3}$ has no solution in integers.-/\n", "formal_statement": "theorem exercise_3_5 : ¬ ∃ x y : , 7*x^3 + 2 = y^3 :=", "goal": "⊢ ¬∃ x y, 7 * x ^ 3 + 2 = y ^ 3", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_10", "split": "test", "informal_prefix": "/-- If $n$ is not a prime, show that $(n-1) ! \\equiv 0(n)$, except when $n=4$.-/\n", "formal_statement": "theorem exercise_3_10 {n : } (hn0 : ¬ n.Prime) (hn1 : n ≠ 4) :\n Nat.factorial (n-1) ≡ 0 [MOD n] :=", "goal": "n : \nhn0 : ¬n.Prime\nhn1 : n ≠ 4\n⊢ (n - 1).factorial ≡ 0 [MOD n]", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_3_14", "split": "valid", "informal_prefix": "/-- Let $p$ and $q$ be distinct odd primes such that $p-1$ divides $q-1$. If $(n, p q)=1$, show that $n^{q-1} \\equiv 1(p q)$.-/\n", "formal_statement": "theorem exercise_3_14 {p q n : } (hp0 : p.Prime ∧ p > 2)\n (hq0 : q.Prime ∧ q > 2) (hpq0 : p ≠ q) (hpq1 : p - 1 q - 1)\n (hn : n.gcd (p*q) = 1) :\n n^(q-1) ≡ 1 [MOD p*q] :=", "goal": "p q n : \nhp0 : p.Prime ∧ p > 2\nhq0 : q.Prime ∧ q > 2\nhpq0 : p ≠ q\nhpq1 : p - 1 q - 1\nhn : n.gcd (p * q) = 1\n⊢ n ^ (q - 1) ≡ 1 [MOD p * q]", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_4", "split": "test", "informal_prefix": "/-- Consider a prime $p$ of the form $4 t+1$. Show that $a$ is a primitive root modulo $p$ iff $-a$ is a primitive root modulo $p$.-/\n", "formal_statement": "theorem exercise_4_4 {p t: } (hp0 : p.Prime) (hp1 : p = 4*t + 1)\n (a : ZMod p) :\n IsPrimitiveRoot a p ↔ IsPrimitiveRoot (-a) p :=", "goal": "p t : \nhp0 : p.Prime\nhp1 : p = 4 * t + 1\na : ZMod p\n⊢ IsPrimitiveRoot a p ↔ IsPrimitiveRoot (-a) p", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_5", "split": "valid", "informal_prefix": "/-- Consider a prime $p$ of the form $4 t+3$. Show that $a$ is a primitive root modulo $p$ iff $-a$ has order $(p-1) / 2$.-/\n", "formal_statement": "theorem exercise_4_5 {p t : } (hp0 : p.Prime) (hp1 : p = 4*t + 3)\n (a : ZMod p) :\n IsPrimitiveRoot a p ↔ ((-a) ^ ((p-1)/2) = 1 ∧ ∀ (k : ), k < (p-1)/2 → (-a)^k ≠ 1) :=", "goal": "p t : \nhp0 : p.Prime\nhp1 : p = 4 * t + 3\na : ZMod p\n⊢ IsPrimitiveRoot a p ↔ (-a) ^ ((p - 1) / 2) = 1 ∧ ∀ k < (p - 1) / 2, (-a) ^ k ≠ 1", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_6", "split": "test", "informal_prefix": "/-- If $p=2^{n}+1$ is a Fermat prime, show that 3 is a primitive root modulo $p$.-/\n", "formal_statement": "theorem exercise_4_6 {p n : } (hp : p.Prime) (hpn : p = 2^n + 1) :\n IsPrimitiveRoot 3 p :=", "goal": "p n : \nhp : p.Prime\nhpn : p = 2 ^ n + 1\n⊢ IsPrimitiveRoot 3 p", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_8", "split": "valid", "informal_prefix": "/-- Let $p$ be an odd prime. Show that $a$ is a primitive root modulo $p$ iff $a^{(p-1) / q} \\not \\equiv 1(p)$ for all prime divisors $q$ of $p-1$.-/\n", "formal_statement": "theorem exercise_4_8 {p a : } (hp : Odd p) :\n IsPrimitiveRoot a p ↔ (∀ q : , q (p-1) → q.Prime → ¬ a^(p-1) ≡ 1 [MOD p]) :=", "goal": "p a : \nhp : Odd p\n⊢ IsPrimitiveRoot a p ↔ ∀ (q : ), q p - 1 → q.Prime → ¬a ^ (p - 1) ≡ 1 [MOD p]", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_4_11", "split": "test", "informal_prefix": "/-- Prove that $1^{k}+2^{k}+\\cdots+(p-1)^{k} \\equiv 0(p)$ if $p-1 \\nmid k$ and $-1(p)$ if $p-1 \\mid k$.-/\n", "formal_statement": "theorem exercise_4_11 {p : } (hp : p.Prime) (k s: )\n (s := ∑ n : Fin p, (n : ) ^ k) :\n ((¬ p - 1 k) → s ≡ 0 [MOD p]) ∧ (p - 1 k → s ≡ 0 [MOD p]) :=", "goal": "p : \nhp : p.Prime\nk s✝ : \ns : optParam (∑ n : Fin p, ↑n ^ k)\n⊢ (¬p - 1 k → s ≡ 0 [MOD p]) ∧ (p - 1 k → s ≡ 0 [MOD p])", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_13", "split": "valid", "informal_prefix": "/-- Show that any prime divisor of $x^{4}-x^{2}+1$ is congruent to 1 modulo 12 .-/\n", "formal_statement": "theorem exercise_5_13 {p x: } (hp : Prime p)\n (hpx : p (x^4 - x^2 + 1)) : p ≡ 1 [ZMOD 12] :=", "goal": "p x : \nhp : Prime p\nhpx : p x ^ 4 - x ^ 2 + 1\n⊢ p ≡ 1 [ZMOD 12]", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_28", "split": "test", "informal_prefix": "/-- Show that $x^{4} \\equiv 2(p)$ has a solution for $p \\equiv 1(4)$ iff $p$ is of the form $A^{2}+64 B^{2}$.-/\n", "formal_statement": "theorem exercise_5_28 {p : } (hp : p.Prime) (hp1 : p ≡ 1 [MOD 4]):\n ∃ x, x^4 ≡ 2 [MOD p] ↔ ∃ A B, p = A^2 + 64*B^2 :=", "goal": "p : \nhp : p.Prime\nhp1 : p ≡ 1 [MOD 4]\n⊢ ∃ x, x ^ 4 ≡ 2 [MOD p] ↔ ∃ A B, p = A ^ 2 + 64 * B ^ 2", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_5_37", "split": "valid", "informal_prefix": "/-- Show that if $a$ is negative then $p \\equiv q(4 a) together with p\\not | a$ imply $(a / p)=(a / q)$.-/\n", "formal_statement": "theorem exercise_5_37 {p q : } [Fact (p.Prime)] [Fact (q.Prime)] {a : }\n (ha : a < 0) (h0 : p ≡ q [ZMOD 4*a]) (h1 : ¬ ((p : ) a)) :\n legendreSym p a = legendreSym q a :=", "goal": "p q : \ninst✝¹ : Fact p.Prime\ninst✝ : Fact q.Prime\na : \nha : a < 0\nh0 : ↑p ≡ ↑q [ZMOD 4 * a]\nh1 : ¬↑p a\n⊢ legendreSym p a = legendreSym q a", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_12_12", "split": "test", "informal_prefix": "/-- Show that $\\sin (\\pi / 12)$ is an algebraic number.-/\n", "formal_statement": "theorem exercise_12_12 : IsAlgebraic (sin (Real.pi/12)) :=", "goal": "⊢ IsAlgebraic (π / 12).sin", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_18_4", "split": "valid", "informal_prefix": "/-- Show that 1729 is the smallest positive integer expressible as the sum of two different integral cubes in two ways.-/\n", "formal_statement": "theorem exercise_18_4 {n : } (hn : ∃ x y z w : ,\n x^3 + y^3 = n ∧ z^3 + w^3 = n ∧ x ≠ z ∧ x ≠ w ∧ y ≠ z ∧ y ≠ w) :\n n ≥ 1729 :=", "goal": "n : \nhn : ∃ x y z w, x ^ 3 + y ^ 3 = ↑n ∧ z ^ 3 + w ^ 3 = ↑n ∧ x ≠ z ∧ x ≠ w ∧ y ≠ z ∧ y ≠ w\n⊢ n ≥ 1729", "header": "import Mathlib\n\nopen Real\nopen scoped BigOperators\n\n"}
{"name": "exercise_2020_b5", "split": "valid", "informal_prefix": "/-- For $j \\in\\{1,2,3,4\\}$, let $z_{j}$ be a complex number with $\\left|z_{j}\\right|=1$ and $z_{j} \\neq 1$. Prove that $3-z_{1}-z_{2}-z_{3}-z_{4}+z_{1} z_{2} z_{3} z_{4} \\neq 0 .$-/\n", "formal_statement": "theorem exercise_2020_b5 (z : Fin 4 → ) (hz0 : ∀ n, ‖z n‖ < 1)\n (hz1 : ∀ n : Fin 4, z n ≠ 1) :\n 3 - z 0 - z 1 - z 2 - z 3 + (z 0) * (z 1) * (z 2) * (z 3) ≠ 0 :=", "goal": "z : Fin 4 → \nhz0 : ∀ (n : Fin 4), ‖z n‖ < 1\nhz1 : ∀ (n : Fin 4), z n ≠ 1\n⊢ 3 - z 0 - z 1 - z 2 - z 3 + z 0 * z 1 * z 2 * z 3 ≠ 0", "header": "import Mathlib\n\nopen scoped BigOperators\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2018_a5", "split": "test", "informal_prefix": "/-- Let $f: \\mathbb{R} \\rightarrow \\mathbb{R}$ be an infinitely differentiable function satisfying $f(0)=0, f(1)=1$, and $f(x) \\geq 0$ for all $x \\in$ $\\mathbb{R}$. Show that there exist a positive integer $n$ and a real number $x$ such that $f^{(n)}(x)<0$.-/\n", "formal_statement": "theorem exercise_2018_a5 (f : ) (hf : ContDiff f)\n (hf0 : f 0 = 0) (hf1 : f 1 = 1) (hf2 : ∀ x, f x ≥ 0) :\n ∃ (n : ) (x : ), iteratedDeriv n f x = 0 :=", "goal": "f : \nhf : ContDiff f\nhf0 : f 0 = 0\nhf1 : f 1 = 1\nhf2 : ∀ (x : ), f x ≥ 0\n⊢ ∃ n x, iteratedDeriv n f x = 0", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2018_b2", "split": "valid", "informal_prefix": "/-- Let $n$ be a positive integer, and let $f_{n}(z)=n+(n-1) z+$ $(n-2) z^{2}+\\cdots+z^{n-1}$. Prove that $f_{n}$ has no roots in the closed unit disk $\\{z \\in \\mathbb{C}:|z| \\leq 1\\}$.-/\n", "formal_statement": "theorem exercise_2018_b2 (n : ) (hn : n > 0) (f : )\n (hf : ∀ n : , f n = λ (z : ) => (∑ i : Fin n, (n-i)* z^(i : ))) :\n ¬ (∃ z : , ‖z‖ ≤ 1 ∧ f n z = 0) :=", "goal": "n : \nhn : n > 0\nf : \nhf : ∀ (n : ), f n = fun z => ∑ i : Fin n, (↑n - ↑↑i) * z ^ ↑i\n⊢ ¬∃ z, ‖z‖ ≤ 1 ∧ f n z = 0", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2018_b4", "split": "test", "informal_prefix": "/-- Given a real number $a$, we define a sequence by $x_{0}=1$, $x_{1}=x_{2}=a$, and $x_{n+1}=2 x_{n} x_{n-1}-x_{n-2}$ for $n \\geq 2$. Prove that if $x_{n}=0$ for some $n$, then the sequence is periodic.-/\n", "formal_statement": "theorem exercise_2018_b4 (a : ) (x : ) (hx0 : x 0 = a)\n (hx1 : x 1 = a)\n (hxn : ∀ n : , n ≥ 2 → x (n+1) = 2*(x n)*(x (n-1)) - x (n-2))\n (h : ∃ n, x n = 0) :\n ∃ c, Function.Periodic x c :=", "goal": "a : \nx : \nhx0 : x 0 = a\nhx1 : x 1 = a\nhxn : ∀ n ≥ 2, x (n + 1) = 2 * x n * x (n - 1) - x (n - 2)\nh : ∃ n, x n = 0\n⊢ ∃ c, Function.Periodic x c", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2017_b3", "split": "valid", "informal_prefix": "/-- Suppose that $f(x)=\\sum_{i=0}^{\\infty} c_{i} x^{i}$ is a power series for which each coefficient $c_{i}$ is 0 or 1 . Show that if $f(2 / 3)=3 / 2$, then $f(1 / 2)$ must be irrational.-/\n", "formal_statement": "theorem exercise_2017_b3 (f : ) (c : )\n (hf : f = λ x => (∑' (i : ), (c i) * x^i))\n (hc : ∀ n, c n = 0 c n = 1)\n (hf1 : f (2/3) = 3/2) :\n Irrational (f (1/2)) :=", "goal": "f : \nc : \nhf : f = fun x => ∑' (i : ), c i * x ^ i\nhc : ∀ (n : ), c n = 0 c n = 1\nhf1 : f (2 / 3) = 3 / 2\n⊢ Irrational (f (1 / 2))", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2014_a5", "split": "test", "informal_prefix": "/-- Let-/\n", "formal_statement": "theorem exercise_2014_a5 (P : → Polynomial )\n (hP : ∀ n, P n = ∑ i : Fin n, (n+1) * Polynomial.X ^ n) :\n ∀ (j k : ), j ≠ k → IsCoprime (P j) (P k) :=", "goal": "P : → Polynomial \nhP : ∀ (n : ), P n = ∑ i : Fin n, (↑n + 1) * Polynomial.X ^ n\n⊢ ∀ (j k : ), j ≠ k → IsCoprime (P j) (P k)", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2010_a4", "split": "valid", "informal_prefix": "/-- Prove that for each positive integer $n$, the number $10^{10^{10^n}}+10^{10^n}+10^n-1$ is not prime.-/\n", "formal_statement": "theorem exercise_2010_a4 (n : ) :\n ¬ Nat.Prime (10^10^10^n + 10^10^n + 10^n - 1) :=", "goal": "n : \n⊢ ¬(10 ^ 10 ^ 10 ^ n + 10 ^ 10 ^ n + 10 ^ n - 1).Prime", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2001_a5", "split": "test", "informal_prefix": "/-- Prove that there are unique positive integers $a, n$ such that $a^{n+1}-(a+1)^n=2001$.-/\n", "formal_statement": "theorem exercise_2001_a5 :\n ∃! a : , ∃! n : , a > 0 ∧ n > 0 ∧ a^(n+1) - (a+1)^n = 2001 :=", "goal": "⊢ ∃! a, ∃! n, a > 0 ∧ n > 0 ∧ a ^ (n + 1) - (a + 1) ^ n = 2001", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_2000_a2", "split": "valid", "informal_prefix": "/-- Prove that there exist infinitely many integers $n$ such that $n, n+1, n+2$ are each the sum of the squares of two integers.-/\n", "formal_statement": "theorem exercise_2000_a2 :\n ∀ N : , ∃ n : , n > N ∧ ∃ i : Fin 6 → , n = (i 0)^2 + (i 1)^2 ∧\n n + 1 = (i 2)^2 + (i 3)^2 ∧ n + 2 = (i 4)^2 + (i 5)^2 :=", "goal": "⊢ ∀ (N : ), ∃ n > N, ∃ i, n = i 0 ^ 2 + i 1 ^ 2 ∧ n + 1 = i 2 ^ 2 + i 3 ^ 2 ∧ n + 2 = i 4 ^ 2 + i 5 ^ 2", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_1999_b4", "split": "test", "informal_prefix": "/-- Let $f$ be a real function with a continuous third derivative such that $f(x), f^{\\prime}(x), f^{\\prime \\prime}(x), f^{\\prime \\prime \\prime}(x)$ are positive for all $x$. Suppose that $f^{\\prime \\prime \\prime}(x) \\leq f(x)$ for all $x$. Show that $f^{\\prime}(x)<2 f(x)$ for all $x$.-/\n", "formal_statement": "theorem exercise_1999_b4 (f : ) (hf: ContDiff 3 f)\n (hf1 : ∀ n ≤ 3, ∀ x : , iteratedDeriv n f x > 0)\n (hf2 : ∀ x : , iteratedDeriv 3 f x ≤ f x) :\n ∀ x : , deriv f x < 2 * f x :=", "goal": "f : \nhf : ContDiff 3 f\nhf1 : ∀ n ≤ 3, ∀ (x : ), iteratedDeriv n f x > 0\nhf2 : ∀ (x : ), iteratedDeriv 3 f x ≤ f x\n⊢ ∀ (x : ), deriv f x < 2 * f x", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_1998_a3", "split": "valid", "informal_prefix": "/-- Let $f$ be a real function on the real line with continuous third derivative. Prove that there exists a point $a$ such that-/\n", "formal_statement": "theorem exercise_1998_a3 (f : ) (hf : ContDiff 3 f) :\n ∃ a : , (f a) * (deriv f a) * (iteratedDeriv 2 f a) * (iteratedDeriv 3 f a) ≥ 0 :=", "goal": "f : \nhf : ContDiff 3 f\n⊢ ∃ a, f a * deriv f a * iteratedDeriv 2 f a * iteratedDeriv 3 f a ≥ 0", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}
{"name": "exercise_1998_b6", "split": "test", "informal_prefix": "/-- Prove that, for any integers $a, b, c$, there exists a positive integer $n$ such that $\\sqrt{n^3+a n^2+b n+c}$ is not an integer.-/\n", "formal_statement": "theorem exercise_1998_b6 (a b c : ) :\n ∃ n : , n > 0 ∧ ¬ ∃ m : , Real.sqrt (n^3 + a*n^2 + b*n + c) = m :=", "goal": "a b c : \n⊢ ∃ n > 0, ¬∃ m, √(↑n ^ 3 + ↑a * ↑n ^ 2 + ↑b * ↑n + ↑c) = ↑m", "header": "import Mathlib\n\nopen scoped BigOperators\n\n"}