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Abstract

We introduce DeepSeek-Prover-V1.5, an open-source language model designed for theorem
proving in Lean 4, which enhances DeepSeek-Prover-V1 by optimizing both training and infer-
ence processes. Pre-trained on DeepSeekMath-Base with specialization in formal mathematical
languages, the model undergoes supervised fine-tuning using an enhanced formal theorem
proving dataset derived from DeepSeek-Prover-V1. Further refinement is achieved through rein-
forcement learning from proof assistant feedback (RLPAF). Beyond the single-pass whole-proof
generation approach of DeepSeek-Prover-V1, we propose RMaxTS, a variant of Monte-Carlo
tree search that employs an intrinsic-reward-driven exploration strategy to generate diverse
proof paths. DeepSeek-Prover-V1.5 demonstrates significant improvements over DeepSeek-
Prover-V1, achieving new state-of-the-art results on the test set of the high school level miniF2F
benchmark (63.5%) and the undergraduate level ProofNet benchmark (25.3%).
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Figure 1 | Pass rates of models on formal theorem proving benchmarks in Lean 4: the high
school level miniF2F-test benchmark (Zheng et al., 2022) and the undergraduate level ProofNet
benchmark (Azerbayev et al., 2023). We compare both the pre-trained and fine-tuned versions
of DeepSeek-Prover-V1.5 with strong baselines.
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1. Introduction

Recent advancements in large language models have significantly influenced mathematical
reasoning and theorem proving in artificial intelligence. Despite notable progress in natural
language domains, language models still encounter substantial challenges in formal theorem
proving, e.g. using Lean (Moura and Ullrich, 2021) and Isabelle (Paulson, 1994), which requires
rigorous derivations satisfying formal specifications of the verification system. Even advanced
models like GPT-4 (OpenAI, 2023) struggle with complex formal proofs, underscoring the
intricate nature of both the coding and the mathematics involved. A formal theorem proving
model must not only grasp the syntax and semantics of formal systems like the Lean theorem
prover but also align abstract mathematical reasoning with precise formal representation.

Language models in formal theorem proving typically employ two strategies: proof-step
generation (Polu and Sutskever, 2020; Jiang et al., 2022; Lample et al., 2022; Yang et al., 2023;
Wu et al., 2024) and whole-proof generation (Jiang et al., 2022; Zhao et al., 2023; Wang et al.,
2023). Proof-step generation predicts each subsequent tactic and verifies it using the formal
verifier to obtain updated information about the current tactic state, often utilizing tree search
techniques to construct valid proofs. In contrast, whole-proof generation is computationally
efficient, which produces an entire proof code based on the theorem statement, requiring less
communication budget to coordinate between the prover model and the formal theorem verifier.
While DeepSeek-Prover-V1 (Xin et al., 2024) has achieved state-of-the-art results in Lean 4 with
whole-proof generation, this paradigm presents its unique challenges. It requires long-horizon
sequence prediction without access to intermediate tactic states, and future tactics depend on
these hidden results. In Lean’s tactic mode, proofs are constructed through a sequence of tactics
that transform the proof state. This sequential nature introduces the risk of compounding errors
(Ross et al., 2011), where a single misinterpretation can lead to significant deviations from a
valid proof path. More specifically, the auto-regressive model may have incorrect believes on
intermediate tactic states when generating long proofs.

To seamlessly integrate intermediate tactic states in proof-step generation while maintaining
the simplicity and computational efficiency of whole-proof generation, we have developed
a unified approach in DeepSeek-Prover-V1.5. This method combines the strengths of both
proof-step and whole-proof generation techniques through a truncate-and-resume mechanism.
The process begins with standard whole-proof generation, where the language model completes
the proof code following the theorem statement prefix. The Lean prover then verifies this code.
If the proof is correct and complete, the procedure terminates. If an error is detected, the code
is truncated at the first error message, and any subsequent code is discarded. The successfully
generated proof code is then used as a prompt for the generation of next proof segment. To
enhance the accuracy of the model’s new completions, we append the latest state from the
Lean 4 prover as a comment at the end of the prompt. Notably, our method is not restricted
to resuming from the last successfully applied tactic. We integrate the truncate-and-resume
mechanism into Monte-Carlo tree search (MCTS; Coulom, 2006) in which the truncation points
are scheduled by the tree search policy. In addition, we propose a novel reward-free exploration
algorithm for MCTS to address the reward sparsity issue of proof search. We assign the tree
search agent intrinsic motivation, a.k.a. curiosity (Schmidhuber, 2010), to extensively explore
the tactic state space. These algorithmic modules extend the functionality of our whole-proof
generation model to become a flexible tool for interactive theorem proving, which can effectively
utilize the proof assistant feedback and generate diverse solution candidates.
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    rw [h₀]
    constructor
    · intro h
      -- We solve the equation (2x + 3)[2x - 10] = 0.
      have : (2 * x + 3) * (x - 4 + x - 6) = 0 :=
        by linear_combination h
      -- This gives us two cases to solve.
      cases' eq_zero_or_eq_zero_of_mul_eq_zero this
        with h1 h2
      · -- Case 1: 2x + 3 = 0
        left
        linarith
      · -- Case 2: 2x - 10 = 0
        right
        linarith
    · -- We check that -3/2 and 5 are indeed roots.
      rintro (rfl | rfl) <;> norm_num
  -- Now we compute the sum of the roots.
  rw [this]
  norm_num

reward

Passed the verification of
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    rw [h₀]
    constructor
    · intro h
      -- We solve the equation (2x + 3)[2x - 10] = 0.
      have : (2 * x + 3) * (x - 4 + x - 6) = 0 :=
        by linear_combination h
      -- This gives us two cases to solve.
      cases' eq_zero_or_eq_zero_of_mul_eq_zero this
        with h1 h2
      · -- Case 1: 2x + 3 = 0
        left
        linear_combination (1 / 2) * h1
      · -- Case 2: 2x - 10 = 0
        right
        linear_combination (1 / 2) * h2
    · -- We check that -3/2 and 5 are indeed roots.
      rintro (rfl | rfl) <;> norm_num
  -- Now we compute the sum of the roots.
  rw [this]
  norm_num
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import Mathlib
import Aesop

set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

/-- Compute the sum of all the roots of $(2x+3)(x-4)+(2x+3)(x-6)=0$.
Show that it is 7/2.-/
theorem amc12a_2002_p1 (f : ℂ → ℂ) (h₀ : ∀ x, f x = (2 * x + 3) * (x - 4) + 
(2 * x + 3) * (x - 6)) (h₁ : Fintype (f⁻¹' {0})) : 
  ∑ y in (f⁻¹' {0}).toFinset, y = 7 / 2 := by
  -- We show that the roots of the polynomial are -3/2 and 5.
  have : (f⁻¹' {0}).toFinset = {-(3 / 2 : ℂ), (5 : ℂ)} := by
    ext x
    simp only [Set.mem_toFinset, Set.mem_singleton_iff, Set.mem_preimage,
      Set.mem_setOf, Finset.mem_insert, Finset.mem_singleton]
    /- tactic state:
    case a
    f : ℂ → ℂ
    h₀ : ∀ (x : ℂ), f x = (2 * x + 3) * (x - 4) + (2 * x + 3) * (x - 6)
    h₁ : Fintype ↑(f ⁻¹' {0})
    x : ℂ
    ⊢ f x = 0 ↔ x = -(3 / 2) ∨ x = 5
    -/

Whole-proof
Completion

Error Message from Lean 4 prover:
failed to synthesize
   LinearOrder ℂ

Figure 2 | Overall Framework. DeepSeek-Prover-V1.5 is trained through pre-training, super-
vised fine-tuning, and reinforcement learning. During supervised fine-tuning, the pre-trained
model receives an incomplete theorem proof ending with a tactic state comment keyword. The
model is trained to predict the content of this tactic state (auxiliary objective) and complete
the subsequent proof steps (main objective). In the reinforcement learning stage, given an
incomplete theorem proof and ground-truth tactic state from the Lean prover, we roll out the
fine-tuned model to generate multiple proof candidates, which are then verified by the Lean
prover. The verification results for these candidates are used as binary (0-1) rewards to further
optimize the model and enhance its alignment with the formal specifications of the verification
system. For model inference, we offer two alternatives: single-pass sampling and Monte-Carlo
tree search.

1.1. Contributions

We present a comprehensive framework for developing a language model-based formal math-
ematics prover, integrating several key components: large-scale mathematical pre-training,
formal mathematics corpus construction and augmentation, online reinforcement learning from
proof assistant feedback, and a tree search methodology for long-term planning in theorem
proving. The pre-trained model, supervised fine-tuned model, and reinforcement learning
model, along with the code for the Monte-Carlo tree search algorithm, are publicly available for
further research and application.

• Pre-Training: We enhance our base model’s capabilities in formal theorem proving and
mathematical reasoning by further pre-training on high-quality mathematics and code
data, with a focus on formal languages such as Lean, Isabelle, and Metamath.

• Supervised Fine-Tuning: We improve the Lean 4 code completion dataset by implement-
ing two data augmentation techniques. First, we use DeepSeek-Coder V2 236B (Zhu et al.,
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2024) to annotate natural language chain-of-thought comments alongside Lean 4 code,
aligning formal theorem proving with natural language reasoning. Second, we insert
intermediate tactic state information within the Lean 4 proof code, enabling our model to
leverage compiler feedback effectively. The resulting dataset is then used to fine-tune the
pre-trained model.

• Reinforcement Learning: We employ the GRPO algorithm (Shao et al., 2024) to perform
reinforcement learning from proof assistant feedback (RLPAF) on the supervised fine-
tuned model. Verification results from the Lean prover serve as reward supervision,
enhancing the model’s alignment with the formal specifications of the verification system.

• Monte-Carlo Tree Search: We advance the tree search method in formal theorem proving
by introducing a novel abstraction and a corresponding search algorithm. Our truncate-
and-resume mechanism acts as a state-action abstraction, seamlessly integrating the tree
search process into the whole-proof generation framework. We present RMaxTS, an
innovative Monte-Carlo tree search algorithm that leverages the RMax (Brafman and
Tennenholtz, 2002) strategy to tackle exploration challenges in sparse-reward proof search
problems. By assigning intrinsic rewards, this algorithm encourages the prover agent
to generate diverse planning paths, thereby fostering extensive exploration of the proof
space.

1.2. Summary of Evaluations and Metrics

• miniF2F: In the single-pass whole-proof generation setting, DeepSeek-Prover-V1.5 achieved
a pass rate of 60.2% on the test set of miniF2F, marking a significant improvement of abso-
lute 10.2 percentage points over DeepSeek-Prover-V1’s 50.0%. Incorporating tree search
techniques further elevated the pass rate to a new state-of-the-art 63.5%.

• ProofNet: DeepSeek-Prover-V1.5 also demonstrated strong performance in the single-pass
whole-proof generation setting for ProofNet, with pass rates of 21.6% on the validation set
and 23.7% on the test set. The integration of tree search techniques further enhanced these
results, achieving new state-of-the-art pass rates of 25.4% on the validation set and 25.3%
on the test set.

2. Model Training

2.1. Pre-training

To enhance our language model’s proficiency in generating formal proofs and reasoning through
mathematical language, we further pre-train our base model (Shao et al., 2024). This refinement
involved training on high-quality datasets that include both code and natural language mathe-
matical content. We specifically focused on formal languages widely used in proof assistants,
such as Lean, Isabelle, and Metamath. We designate this improved model as DeepSeek-Prover-
V1.5-Base.

2.2. Supervised Fine-tuning

In this section, we explore the methodology and processes involved in the supervised fine-tuning
(SFT) of DeepSeek-Prover-V1.5. Specifically, we augment the proof dataset from DeepSeek-
Prover-V1 by adding detailed explanatory comments. This enhancement aims to improve
the alignment between natural language descriptions and Lean 4 code, thereby facilitating
better formal mathematical reasoning. Additionally, we incorporate intermediate tactic state
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information as an auxiliary prediction task to support the truncate-and-resume mechanism used
in the Monte-Carlo Tree Search process. We refer to the resulting model as DeepSeek-Prover-
V1.5-SFT.

Data Curation. We develop a comprehensive Lean 4 code completion dataset for the super-
vised fine-tuning. This dataset includes synthetic proof code derived from a wide range of
formal theorems. These theorems are sourced from various projects, such as the standard
Lean 4 math library Mathlib4 (Mathlib Community, 2020), synthetic theorems from DeepSeek-
Prover-V1 (Xin et al., 2024) and Lean Workbook (Ying et al., 2024), and validation sets from the
miniF2F (Zheng et al., 2022) and ProofNet (Azerbayev et al., 2023) benchmarks. To augment
the formal proof data, we employed an expert iteration process (Polu and Sutskever, 2020).
This involves generating proofs using the language model, verifying the generated proof data,
retraining the model with the verified data, and then using the optimized model to generate
additional proof data. Between each iteration, we use DeepSeek-Coder V2 236B (Zhu et al., 2024)
to annotate the thought process before the proof code as comments. Finally, we tailor these data
for the truncate-and-resume mechanism for Monte-Carlo Tree Search (details in Section 3.1). The
resulting proof dataset consists of 9,645k sequences.

Thought-augmented Proof Generation. In DeepSeek-Prover-V1, we identified a significant
gap between problem-solving strategies in natural language and theorem proving in Lean. In
natural language, models generate detailed deduction steps to construct proofs, whereas in
Lean, they often rely on a sequence of high-level tactic calls to brute-force solutions. These
high-level tactics, while effective, obscure their internal workings and outcomes, hindering the
model’s ability to resolve complex proof goals with structured mathematical reasoning. To
address this issue, we develop an approach that incorporates natural language reasoning before
generating theorem proof code. Similar to Lean-STaR (Lin et al., 2024), which performs isolated
chain-of-thought reasoning (Wei et al., 2022; Feng et al., 2023) before each proof step, our method
integrates this reasoning directly as comments within the proof code. We use the DeepSeek-
Coder V2 236B (Zhu et al., 2024) to enhance existing data in DeepSeek-Prover-V1 in two ways:
first, by inserting a complete natural language solution at the beginning of the proof block,
and second, by alternately inserting specific natural language steps for corresponding Lean
tactics. Training the model with this data format enforces it to propose complete mathematical
reasoning at the beginning of the proof block and detailed step planning before each tactic. This
approach successfully develops new behaviors, employing delicate mathematical thinking to
guide the generation of tactics. In the training data, two distinct guiding prompts are used to
differentiate between the CoT (Chain of Thought) mode and the non-CoT mode for proof code
completion. Examples of input and output in both modes can be found in Appendix A.

Prompt Augmentation with Tactic State Information. To implement the truncate-and-resume
mechanism for Monte-Carlo Tree Search, we needed to extract tactic information from the code
generated by the model. We enhanced the Lean REPL (Read-Eval-Print Loop; Leanprover
Community, 2023) with data extraction tools from the LeanDojo (Yang et al., 2023) project. This
allowed us to extract tactic information in triples, which include the position of each tactic, as
well as the tactic states before and after its application. This information helps us identify the
specific tactic code that triggers verification errors (used in the expansion step for tree search, see
Section 3.2). For each tactic in a generated valid formal proof, we insert the tactic state returned
by the verifier as a comment "/- tactic state: ... -/". During training, we use all tokens following
"/- tactic state: " as responses to calculate the supervised fine-tuning loss, while the tokens
before this comment is used as prompts and do not contribute to the training loss calculation.
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Training Setting. We conduct supervised fine-tuning based on the pre-trained model and
train for 9B tokens, using a batch size of 2,048 and a constant learning rate of 1e-4. The training
process begins with 100 warm-up steps to stabilize the learning dynamics. Training examples
are randomly concatenated to form sequences, with a maximum context length of 4,096 tokens.

2.3. Reinforcement Learning from Proof Assistant Feedback

Reinforcement learning (RL) has been proven effective in enhancing the mathematical reasoning
capabilities of supervised fine-tuned language models (Shao et al., 2024). To further advance
DeepSeek-Prover-V1.5-SFT, we incorporate a reinforcement learning phase, resulting in the
model DeepSeek-Prover-V1.5-RL. This phase leverages RL to enhance performance based on
verification feedback from the Lean 4 prover. The specifics of this RL process are detailed below.

Prompts. In the reinforcement learning stage, we use a subset of theorem statements from the
supervised fine-tuning dataset as training prompts. We select theorems for which DeepSeek-
Prover-V1.5-SFT has a moderate success rate in generating correct proofs upon multiple attempts.
This ensures that the model has room for improvement while still being able to receive positive
feedback. After filtering, we retain approximately 4.5k unique theorem statements. Each
theorem is prefixed with both CoT and non-CoT guiding prompts to enhance the model’s proof
generation capabilities in both modes.

Rewards. When training LLMs via RL, a trained reward model typically provides feedback
signals. In contrast, formal theorem proving benefits from the rigorous verification of generated
proofs by proof assistants, offering a significant advantage. Specifically, each generated proof
receives a reward of 1 if verified as correct, and 0 otherwise. While this binary reward signal
is accurate, it is also sparse, especially for theorems that are challenging for the supervised
fine-tuned model. To mitigate this sparsity, we select training prompts that are challenging yet
achievable for the supervised fine-tuned model, as described above.

Reinforcement Learning Algorithm. We employ the Group Relative Policy Optimization
(GRPO; Shao et al., 2024) as our RL algorithm, which has demonstrated superior effectiveness
and efficiency compared to PPO (Schulman et al., 2017), primarily because it eliminates the
necessity of training an additional critic model. Specifically, GRPO samples a group of candidate
proofs for each theorem prompt and optimizes the model based on the relative rewards of the
outputs within the group. Our prompt selection strategy is designed to likely include both
correct and incorrect proofs among the candidates, aligning well with the group-relative nature
of GRPO and thereby enhancing the training process.

Training Setting. We conduct RL training based on the SFT model, which serves as both the
initial model and the reference model for imposing the Kullback-Leibler (KL) divergence penalty.
We use a constant learning rate of 5e-6, and the KL penalty coefficient is set to 0.02. For each
theorem, we sample a group of 32 candidate proofs, with maximum length set to 2,048. The
training batch size is configured to 512.
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Model Pass@128
miniF2F-test ProofNet-test

Base (3-shot) 29.7% ± 0.5% 9.7% ± 0.7%

SFT (non-CoT) 49.8% ± 0.3% 15.9% ± 0.5%
SFT (CoT) 50.4% ± 0.4% 15.9% ± 0.6%

RL (non-CoT) 50.5% ± 0.6% 17.5% ± 0.5%
RL (CoT) 51.6% ± 0.5% 18.2% ± 0.5%

Figure 3 | Comparison of model capabilities at different training stages. "CoT" and "non-CoT"
refer to evaluations using two guiding prompts. The shaded region represents the range of
standard deviations around the mean values. The notation 𝜇 ± 𝜎 indicates the average accuracy
𝜇 and the standard deviation 𝜎.

2.4. Evaluation

Benchmarks. We evaluate theorem-proving performance on the following benchmarks to
compare model capabilities after each training stage:

• MiniF2F (Zheng et al., 2022) focuses on formal problem-solving skills for high-school
level exercises and competitions, such as AMC, AIME, and IMO, with an emphasis on
algebra and number theory. The benchmark includes 244 validation and 244 test problems,
originally in Lean 3 and manually converted to Lean 4.9.0, based on the version provided
by Yang (2023).

• ProofNet (Azerbayev et al., 2023) evaluates formal theorem-proving capabilities at the
undergraduate level in mathematics. It comprises 185 validation and 186 test problems
from widely-used undergraduate textbooks, covering real and complex analysis, linear
algebra, abstract algebra, and topology. These problems were initially in Lean 3 and
manually converted to Lean 4.9.0.

Prompting Configurations. For each proof attempt of DeepSeek-Prover-V1.5-Base, we inde-
pendently sample three proof demonstrations from the validation set to construct the few-shot
prompts. For the miniF2F benchmark, we use human-written proofs from Yang (2023), while
for the ProofNet benchmark, we use correct proofs generated by DeepSeek-Prover-V1.5-RL as
few-shot demonstrations. For DeepSeek-Prover-V1.5-SFT and DeepSeek-Prover-V1.5-RL, we
employ two types of guiding prompts: one that encourages chain-of-thought (CoT) reasoning
before each proof step, and one that does not (non-CoT). Detailed examples are provided in
Appendix A.

Metric. We evaluate theorem-proving performance using the pass@𝐾 accuracy metric, which
measures the model’s success in generating a correct proof within 𝐾 attempts. Each model is
deployed on a single A100-40G GPU, utilizing the vLLM framework (Kwon et al., 2023) for
sample generation. The sampling parameters are set with a temperature of 1, a top-p value of
0.95, and a maximum token limit of 2,048. The generated proofs are then verified using the Lean
4 theorem prover. For this verification, we import Mathlib4 (Mathlib Community, 2020) and
Aesop (Limperg and From, 2023) to access predefined premises and tactics. The verification
process is subject to a time limit of 300 seconds.
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Comparison across Training Stages. Figure 3 presents a comparative analysis of each training
stage on the miniF2F and ProofNet datasets. Our base model, DeepSeek-Prover-V1.5-Base,
achieves a notable pass rate, solving nearly one-third of the problems on the test set of the
miniF2F benchmark using 3-shot prompting. The supervised fine-tuning stage, resulting in
DeepSeek-Prover-V1.5-SFT, significantly outperforms the base model, with Pass@128 accuracy
increasing by approximately two-thirds on miniF2F and doubling on ProofNet. The subsequent
reinforcement learning stage further enhances the model’s performance, improving Pass@𝐾

accuracy across all values of 𝐾. In contrast to findings in natural language mathematics, such
as those reported in DeepSeekMath (Shao et al., 2024), where reinforcement learning primarily
boosts the correct response from TopK, we observe a genuine enhancement of fundamental
capabilities in formal theorem proving. This improvement is evident not only with a small
sample budget but also remains stable as the sample budget increases. This conclusion is
further supported by later Monte-Carlo Tree Search experiments with larger sample budgets, as
discussed in Section 4.2.

Comparison between CoT and non-CoT. We compare the performance of non-CoT and
CoT generation modes for both DeepSeek-Prover-V1.5-SFT and DeepSeek-Prover-V1.5-RL.
The results in Figure 3 demonstrate that the CoT mode consistently outperforms the non-CoT
mode across most settings. Specifically, DeepSeek-Prover-V1.5-RL, leveraging these enhanced
theorem-proving patterns, achieves superior performance on both benchmarks, with an average
accuracy of 51.6% on miniF2F and 18.2% on ProofNet. The integration of natural language
reasoning in CoT mode significantly enhances the planning and execution of formal proof
writing. For a detailed comparison of proof strategies with and without the use of natural
language chain-of-thought, refer to the examples provided in Appendix A.

3. Exploration-oriented Monte-Carlo Tree Search

3.1. Tactic-level Tree Abstraction

To implement the tree search method in the whole-proof generation setting, we introduce a proof
tree abstraction to define the tailored state and action space, leveraging a truncate-and-resume
mechanism. Roughly following the paradigm of Yao et al. (2023), we begin by decomposing an
incomplete proof into a sequence of tree nodes that correspond to individual proof steps, and
then we utilize the partial content stored in these tree nodes to continue the proof generation
process. Figure 4 illustrates the process of constructing a proof search tree from whole-proof
generation.

Truncate: Proof Decomposition into Tree Nodes. We construct the proof search tree at the
tactic level, where each tree edge represents a single transition step of the tactic state. Initially,
we submit the entire proof the model generated to the Lean prover to parse it into tactics. We
then truncate the proof at the earliest verification error, ensuring that all subsequent tactic codes
can be successfully applied to advance the proof towards the desired theorem. The tactic codes
are segmented into several code fractions, each containing a valid tactic code and its associated
chain-of-thought comments, corresponding to a single tree edge that represents a tactic state
transition. Through this abstraction, each tactic code is converted into a series of tree nodes,
forming a path from the root to a specific node.
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        linarith      · -- Case 2: 2x - 10 = 0        right        linarith    · -- We check that -3/2 and 5 are indeed roots.
      rintro (rfl | rfl) <;> norm_num  -- Now we compute the sum of the roots.
  rw [this]  norm_num

    rw [h₀]
    constructor
    · intro h
      -- We solve the equation (2x + 3)[2x - 10] = 0.
      have : (2 * x + 3) * (x - 4 + x - 6) = 0 :=
        by linear_combination h
      -- This gives us two cases to solve.
      cases' eq_zero_or_eq_zero_of_mul_eq_zero this
        with h1 h2
      · -- Case 1: 2x + 3 = 0
        left

Whole-proof Completion

import Mathlib
import Aesop

set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

/-- Compute the sum of all the roots of $(2x+3)(x-4)+(2x+3)(x-6)=0$.
Show that it is 7/2.-/
theorem amc12a_2002_p1 (f : ℂ → ℂ) (h₀ : ∀ x, f x = (2 * x + 3) * (x - 4) + 
(2 * x + 3) * (x - 6)) (h₁ : Fintype (f⁻¹' {0})) : 
  ∑ y in (f⁻¹' {0}).toFinset, y = 7 / 2 := by
  -- We show that the roots of the polynomial are -3/2 and 5.
  have : (f⁻¹' {0}).toFinset = {-(3 / 2 : ℂ), (5 : ℂ)} := by
    ext x
    simp only [Set.mem_toFinset, Set.mem_singleton_iff, Set.mem_preimage,
      Set.mem_setOf, Finset.mem_insert, Finset.mem_singleton]

Expansion

Error from Lean 4:failed to synthesizeLinearOrder ℂ

DISCARDED

    /- tactic state:
    case a
    f : ℂ → ℂ
    h₀ : ∀ (x : ℂ), f x = (2 * x + 3) * (x - 4) + 
        (2 * x + 3) * (x - 6)
    h₁ : Fintype ↑(f ⁻¹' {0})
    x : ℂ
    ⊢ f x = 0 ↔ x = -(3 / 2) ∨ x = 5
    -/
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Figure 4 | Truncate-and-Resume Mechanism in the Expansion Step of MCTS. (a) After selecting
a node, we trace its corresponding incomplete proof code prefix, which includes the file header,
initial statement, and successfully applied tactics from the ancestor nodes. (b) The language
model then generates the subsequent proof based on this prefix along with a comment block
containing the current tactic state. (c) The combined proof code (prefix and newly generated
code) is verified by the Lean 4 prover. If no errors are found, the tree-search procedure terminates.
If errors are detected, we truncate the newly generated code at the first error message, discard
the subsequent code, and parse the successful portion into tactics. (d) Each tactic is added as
a new node in the search tree, extending a chain of descendants beneath the selected node.
(e) Once the tree updates are complete, the next iteration of expansion begins by selecting an
alternative candidate node, which is not limited to leaf nodes. This process repeats until a correct
proof is found or the sample budget is exhausted.

Resume: Proof Generation from a Tree Node. In Lean 4, different tactics can lead to the same
tactic state, meaning each node in our proof tree can correspond to various tactic codes that
achieve the same outcome. To handle this, we store a set of these equivalent tactic codes at each
node. When the tree search agent expands a node, it randomly selects one tactic to use as a
prompt for the language model. This prompt includes the incomplete proof code ending with
the chosen tactic and the tactic state information from the Lean prover as a comment block. The
fine-tuned model (see Section 2.2) has been trained to recognize and utilize this format, using the
incomplete code augmented with tactic state comments to guide subsequent proof generation.
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3.2. Interactive Theorem Proving via Monte-Carlo Tree Search

Our proof search tree is developed using the standard Monte-Carlo Tree Search (MCTS) paradigm
(MCTS; Coulom, 2006; Browne et al., 2012), which iteratively applies four steps: Selection, Expan-
sion, Simulation, and Backpropagation. We integrate the Simulation step into Expansion because
our whole-proof generation model inherently performs a rollout from the expanded node. The
detailed design of the algorithm workflow is as follows.

Selection. The selection step, a.k.a.the tree policy, starts from the root node and traverses
downward to identify a promising node for expansion. The objective of this algorithmic step is
to trade off between exploration and exploitation (Kocsis and Szepesvári, 2006). The tree policy
at a tree node 𝑠 is computed by selecting the action that maximizes the value from the set of
valid operations:

𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦(𝑠) = arg max
𝑎∈𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑠)∪{⊘}

𝑄𝑈𝐶𝐵 (𝑠, 𝑎), (1)

where the action 𝑎 can be either moving to a child node, denoted by 𝑎 ∈ 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑠), or expanding
the current node 𝑠, denoted by a special token 𝑎 = ⊘. This approach uses a technique called
virtual node (Wang et al., 2023), which assigns each node an imaginary child to represent the
selection of the current node 𝑠 for expansion. It enables the tree search agent to continually
expand non-leaf nodes, as the action space is supported by a generative model whose output
scope cannot be determined by a fixed number of trails. The value estimation 𝑄𝑈𝐶𝐵 (𝑠, 𝑎) of
performing action 𝑎 on node 𝑠 is composed by two components:

∀𝑎 ∈ 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑠) ∪ {⊘}, 𝑄𝑈𝐶𝐵 (𝑠, 𝑎) = 𝑄(𝑠, 𝑎)︸ ︷︷ ︸
Exploitation

+ 𝑈𝐶𝐵(𝑠, 𝑎)︸     ︷︷     ︸
Exploration

, (2)

where 𝑄(𝑠, 𝑎) denotes a sample-based estimation of action values derived from the selection
history, functioning as the exploitation component that retrieves high-value candidates from
previous trials. 𝑈𝐶𝐵(𝑠, 𝑎) denotes the exploration bonus computed by upper confidence bounds
(UCB; Auer, 2002), which diminishes with the repeated execution of the state-action pair (𝑠, 𝑎).
More specifically, 𝑄𝑈𝐶𝐵 (𝑠, 𝑎) stands for an optimistic estimation of 𝑄(𝑠, 𝑎) and can serve as an
upper bound with high probability. We defer the discussion of detailed settings of node values
and UCB bonus to Section 3.3.

Expansion. The next step is invoking the proof generation model to expand the node nom-
inated by the selection phase. Resuming the incomplete proof codes stored on the node des-
ignated for expansion, we perform whole-proof generation to propose a series of subsequent
tactics and submit the generated proof to Lean prover for verification. Such a trial of proof
completion is equivalent to conducting a single rollout of simulation within the standard MCTS
framework. When the verification result indicates the proof is complete, the search procedure
is ready to be terminated, having found a new proof of the desired theorem. Otherwise, we
parse the verification feedback and truncate the generated proof to the assertion of the earliest
verification error. The remaining tactics are transformed into a path of nodes to be merged
into the search tree (see Figure 4). It is important to note that, because we use the whole-proof
generation setting—where the output is an entire proof consisting of a sequence of tactics, rather
than just the next tactic—our expansion procedure may insert a path of tree nodes into the search
tree during each iteration. This differs from the conventional MCTS designed for competitive
games, which typically expands only one layer of children nodes per iteration (Silver et al., 2016,
2018; Schrittwieser et al., 2020).

10



Backpropagation. The final phase of each tree search iteration is to update value statistics along
the selection trajectory from the root to the expanded node, i.e., updating the values associated
with the tree policy stated in Eq. (1). Let 𝜏 = {(𝑟𝑜𝑜𝑡, 𝑠(1) ), (𝑠(1) , 𝑠(2) ), (𝑠(2) , 𝑠(3) ), . . . , (𝑠( |𝜏 |−1) =

𝑠𝑡, ⊘)} denote the selection trajectory of 𝑡-th iteration that ends with 𝑠𝑡 as the expanding node. We
update 𝑄𝑈𝐶𝐵 (𝑠, 𝑎) for all (𝑠, 𝑎) ∈ 𝜏 by taking the most recent trajectory reward 𝑅(𝜏) into account
(details refer to Eq. (7)). The extrinsic source of rewards comes from the compiler feedback,
specifically assigning a reward of 𝑅extrinsic(𝜏) = 1 for completed proofs and 𝑅extrinsic(𝜏) = 0 for
unsolved ones. In Section 3.3, we will introduce an intrinsic reward mechanism to augment the
reward assignment that enhances the agent’s incentive for exploration.

3.3. Intrinsic Rewards for Monte-Carlo Tree Search

In the search problem of formal theorem proving, the extrinsic rewards are extremely sparse,
i.e., the search agent only obtains non-zero rewards when the proof is completely solved. More
specifically, the proof search process forms a tree structure with only a narrow set of leaves
delivering non-zero rewards, which matches a famous hard-exploration case (Krishnamurthy
et al., 2016) in the literature of statistical reinforcement learning. To promote exploration in
sparse-reward sequential decision making, one classical paradigm is constructing intrinsic
rewards (Schmidhuber, 2010) that encourage the agent to not only optimize extrinsic rewards
but also acquire general information about the interactive environment (Bellemare et al., 2016;
Houthooft et al., 2016; Pathak et al., 2017; Burda et al., 2019). In this section, we present
our intrinsic-reward-driven exploration algorithm, RMax applied to Tree Search (RMaxTS), to
incorporate reward-free exploration in the proof search problem.

RMax applied to MCTS. We adopt RMax (Brafman and Tennenholtz, 2002), a classical explo-
ration mechanism, to construct intrinsic rewards for Monte-Carlo tree search. The core idea
of RMax is to explore a broad coverage of the state space. The agent awards itself a maximal
amount of reward upon reaching an unseen state. In the context of proof search, where no
extrinsic rewards are provided until the proof is completed, our algorithmic procedure resembles
ZeroRMax (Jin et al., 2020), in which the agent’s exploration is driven solely by intrinsic rewards,
i.e., setting 𝑅(𝜏) = 𝑅intrinsic(𝜏). The intrinsic reward of a tree expansion step is determined by
whether a new node is added to the search tree,

𝑅intrinsic(𝜏) = I [at least one new node is added to the search tree] , (3)

where 𝜏 denotes the most recent selection trajectory that requires a reward assignment for
backpropagation. This exploration strategy prioritizes the expansion of nodes where the prover
model generates tactics that lead to a diverse range of tactic states. As multiple Lean codes
can result in the same transition of intermediate states, this heuristics can potentially reduce
redundant generation and improve sample efficiency.

UCB for Non-stationary Rewards. The common setting of UCB exploration bonus for Monte-
Carlo tree search is using UCB1 (Auer et al., 2002):

𝑄𝑈𝐶𝐵1(𝑠, 𝑎) =
𝑊 (𝑠, 𝑎)
𝑁 (𝑠, 𝑎) +

√︄
2 ln

∑
𝑎′ 𝑁 (𝑠, 𝑎′)

𝑁 (𝑠, 𝑎) , (4)

𝑊 (𝑠, 𝑎) = ∑
𝜏∈Γ(𝑠,𝑎) 𝑅(𝜏), (5)

𝑁 (𝑠, 𝑎) = |Γ(𝑠, 𝑎) | , (6)
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where Γ(𝑠, 𝑎) = {𝜏 | (𝑠, 𝑎) ∈ 𝜏} denotes the list of tree-policy trajectory 𝜏 containing (𝑠, 𝑎) as an
intermediate selection step. To facilitate discussions, we organize the list Γ(𝑠, 𝑎) = {𝜏1, 𝜏2, · · · }
such that newly collected trajectories have larger subscript indices. In this work, we propose to
use an alternative variant of UCB method. Note that the derived intrinsic reward in Eq. (3) is a
non-stationary reward signal whose expected value decays with the progress of exploration.
That is because it becomes definitely harder to discover new nodes with unseen tactic states as
the search tree expands through sophisticated exploration. To tackle the non-stationarity, we
consider discounted upper confidence bounds (DUCB; Garivier and Moulines, 2011), which uses a
discount factor 𝛾 ∈ (0, 1) to smoothly drop those outdated feedback records:

𝑄𝐷𝑈𝐶𝐵 (𝑠, 𝑎) =
𝑊𝛾 (𝑠, 𝑎)
𝑁𝛾 (𝑠, 𝑎)

+

√︄
2 ln

∑
𝑎′ 𝑁𝛾 (𝑠, 𝑎′)

𝑁𝛾 (𝑠, 𝑎)
, (7)

𝑊𝛾 (𝑠, 𝑎) =
∑𝑁 (𝑠,𝑎)
𝑡=1 𝛾𝑁 (𝑠,𝑎)−𝑡𝑅(𝜏𝑡), (8)

𝑁𝛾 (𝑠, 𝑎) =
∑𝑁 (𝑠,𝑎)−1
𝑡=0 𝛾𝑡, (9)

where newly received feedback would be assigned a larger weight in the value estimation. In
practice, we set 𝛾 = 0.99. Note that the role of discount factor 𝛾 in DUCB differs from its role in
value iteration for infinite-horizon MDPs. The discounting is applied to tree search iterations
rather than to the action-step horizon within a single trajectory.

3.4. Parallelization of Monte-Carlo Tree Search

To enhance the efficiency of Monte-Carlo Tree Search (MCTS), we implement several established
parallelization techniques as described by Chaslot et al. (2008).

• Root Parallelization: We deploy 256 MCTS runners per node, with one language model
per GPU and a batch size of 512 for proof generation. The Lean prover is invoked
through REPL and executed on a cluster with thousands of CPU cores, where each proof
verification task is handled by an individual process, created and terminated in a sandbox.
Both proof generation by language models and verification by Lean provers are handled
asynchronously. This setup allows MCTS runners to perform concurrent tree search
operations, significantly accelerating the process.

• Tree Parallelization: We manage each search tree with 32 thread workers to parallelize
the tree iteration steps. This method effectively schedules and balances the tasks of
proof generation and Lean verification. Each thread worker iteratively performs the tree
search loop by selecting a candidate node for expansion, invoking the language model to
generate the proof, verifying the generated proof with the Lean prover, and performing
backpropagation.

• Virtual Loss: To encourage diverse node selection among concurrent thread workers, we
assign a virtual reward 𝑅(𝜏) = 0 for ongoing iterations. This involves backpropagating a
reward of 0 temporarily and updating it to the true reward upon completion. This strategy
promotes exploration of different nodes for expansion, thereby enhancing the overall
search efficiency.

3.5. Comparison with Existing Methods

In this section, we compare our proposed proof tree search method, which introduces a novel
truncate-and-resume mechanism for whole-proof generation, with existing approaches. Current
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methods for using language models in formal mathematics proof search generally fall into two
main strategies:

• Multi-pass proof-step generation: This strategy breaks down the proving process into
multiple episodes of tactic generation and verification, typically following a tree search
pattern. It involves generating and verifying one tactic at a time, repeating the process
for the next tactic until no proof goals remain. Notable examples include GPT-f (Polu and
Sutskever, 2020; Polu et al., 2022), Thor (Jiang et al., 2022), ReProver (Yang et al., 2023),
Hypertree Proof Search (Lample et al., 2022), and InternLM2-StepProver (Wu et al., 2024).

• Single-pass whole-proof generation: This approach generates and verify an entire proof
in one attempt. If the proof is incorrect, the model generates a new proof in the next
attempt. Methods in this category include DSP (Jiang et al., 2022), Subgoal-Prover Zhao
et al. (2023), LEGO-Prover (Wang et al., 2023), Lyra (Zheng et al., 2023), and miniCTX (Hu
et al., 2024).

Our proof tree search method uniquely bridges these two strategies, offering a novel hybrid
approach. It starts with whole-proof generation, similar to the single-pass approach, but ex-
tends this by implementing a sophisticated truncate-and-resume mechanism. This process
involves truncating the generated proof to its successful initial segment, parsing this segment
into individual tactics, and resuming the tree search from this point. This iterative process effec-
tively implements a Monte-Carlo Tree Search, seamlessly integrating single-pass whole-proof
generation with multi-pass proof-step generation. Consequently, we can train a single model
with nearly identical objectives to support both strategies simultaneously. Our experimental
results demonstrate that this unified approach achieves superior performance in both settings.
By combining the strengths of existing methods and introducing innovative techniques, our
method offers a more versatile and effective solution for formal mathematics proof search,
potentially paving the way for future advancements in this field.

4. Experimental Results

In this section, we evaluate the theorem-proving capabilities of DeepSeek-Prover-V1.5 using two
distinct benchmarks: miniF2F, which encompasses high-school level exercises and competition
problems, and ProofNet, which pertains to undergraduate-level theorems. We present the results
for both complete proof generation and Monte-Carlo tree search methodologies, utilizing the
same trained model and inference configuration as Section 2.4 to ensure consistency.

4.1. Main Results

We present a comparative analysis of DeepSeek-Prover-V1.5 against previous state-of-the-art
language models, highlighting its performance and advancements.

• General-purpose Models: GPT-3.5 and GPT-4 (OpenAI, 2023) are advanced generative
AI models developed by OpenAI, known for their effectiveness across diverse tasks,
including code generation. Despite not being specifically designed for theorem proving,
their extensive parameter scales provide significant capabilities. The evaluation of these
models in formal theorem proving is facilitated by COPRA (Thakur et al., 2023), an
in-context learning agent that leverages these large language models to propose tactic
applications. Additionally, we examine Llemma (Azerbayev et al., 2024), a series of
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language models trained on extensive general mathematical corpora, commonly used as
the base model for formal theorem proving.

• Specialized Models for Formal Mathematics: GPT-f (Polu and Sutskever, 2020; Polu
et al., 2022) represents an initial effort to apply Transformers (Vaswani et al., 2017) to
proof-step generation for theorem proving tasks, utilizing a best-first search module to
construct complete proofs. Subsequent advancements include ReProver (Yang et al.,
2023), LLMStep (Welleck and Saha, 2023), and Lean-STaR (Lin et al., 2024). Hypertree
Proof Search (Lample et al., 2022) explores the use of Monte Carlo tree search in formal
theorem proving using Lean. Concurrent works, InternLM2-Math (Ying et al., 2024) and
InternLM2-StepProver (Wu et al., 2024), also demonstrate outstanding performance.

Metric. We compare the performance of DeepSeek-Prover-V1.5 with state-of-the-art models
using the pass@𝐾 accuracy metric, which evaluates the model’s ability to generate a correct
proof within 𝐾 attempts. We display the sample budget 𝐾 according to the the following rules
to align the computation budget across different generation schemes.

• For single-pass sampling methods, we define the sample budget 𝐾 as the total number
of proofs generated, with large values of 𝐾 factorized for the ease of comparison to tree
search methods.

• For best-first-search methods, following the notation of Azerbayev et al. (2024), we present
𝐾 = 𝑁 × 𝑆 × 𝑇 where 𝑁 denotes the number of best-first-search attempts, 𝑆 denotes the
number of tactics generated for each expansion, and 𝑇 denotes the number of expansion
iterations.

• For tree search methods, e.g., RMaxTS and HTPS (Lample et al., 2022), we present 𝐾 = 𝑁 ×𝑇
where 𝑁 denotes the number of tree search attempts, and 𝑇 denotes the number of model
generations invoked in tree expansions.

Results on miniF2F. Table 1 provides a comparative analysis of various theorem-proving meth-
ods on the miniF2F-test dataset. In the single-pass whole-proof generation setting, DeepSeek-
Prover-V1.5-RL achieved the highest pass rate at 60.2%, marking a significant improvement
of 10.2 percentage points over DeepSeek-Prover-V1’s 50.0%. With a sampling budget limited
to 128 attempts, DeepSeek-Prover-V1.5-RL proved 51.6% of the problems, significantly outper-
forming other whole-proof generation methods and is comparable to the leading tree search
methods. In the Tree Search Methods category, DeepSeek-Prover-V1.5-RL + RMaxTS leads
with a pass rate of 62.7%, establishing a new state-of-the-art and creating a substantial gap
with existing methods. Notably, DeepSeek-Prover-V1.5-RL requires only 3200 whole-proof
generation samplings to achieve a pass rate of 54.9%, surpassing the previous state-of-the-art
result of InternLM2-StepProver, which performs 64 × 3200 tree searches to achieve 54.5%.

Results on ProofNet. Table 2 presents a comparative analysis of various theorem-proving
methods on the ProofNet dataset. DeepSeek-Prover-V1.5-RL achieved pass rates of 22.6%
and 25.3% for the overall ProofNet dataset in the single-pass whole-proof generation setting
and with the enhancement of RMaxTS, respectively. These results surpass the existing state-
of-the-art methods, ReProver (13.8%) and InternLM2-StepProver (18.1%). When the number
of whole-proof generation attempts is restricted to 3200, DeepSeek-Prover-V1.5 also proved
21.7% of the theorems, demonstrating a 3.6% improvement over the previous state-of-the-art,
InternLM2-StepProver.
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Method Sample budget miniF2F-test

Single-pass Whole-Proof Generation Methods

TheoremLlama [49] 128 33.6%

DeepSeek-Prover-V1 [53] 128 46.1% ± 0.5%
16 × 4096 50.0%

DeepSeek-Prover-V1.5-Base
128 29.7% ± 0.5%
3200 39.2%
6400 42.2%

DeepSeek-Prover-V1.5-SFT

32 48.2% ± 0.6%
64 49.6% ± 0.7%

128 50.4% ± 0.4%
3200 53.3% ± 0.5%

4 × 6400 55.8% ± 0.7%
16 × 6400 57.4%

DeepSeek-Prover-V1.5-RL

32 50.0% ± 0.5%
64 50.7% ± 0.4%

128 51.6% ± 0.5%
3200 54.9% ± 0.7%

4 × 6400 58.4% ± 0.6%
16 × 6400 60.2%

Tree Search Methods

COPRA (Code Llama) [45] 1 × 500 5.7%
COPRA (GPT-3.5) [45] 1 × 60 9.0%
COPRA (GPT-4) [45] 1 × 60 26.6%
Llemma-7B [5] 1 × 32 × 100 26.2%
Llemma-34B [5] 1 × 32 × 100 25.8%
ReProver [55] - 26.5%
LLMStep [51] 1 × 32 × 100 27.9%
GPT-f [35] 64 × 8 × 512 36.6%
Hypertree Proof Search [23] 64 × 5000 41.0%
Lean-STaR [26] 64 × 1 × 50 46.3%
InternLM2-Math-7B [58] 1 × 32 × 100 30.3%
InternLM2-Math-Plus-7B [58] 1 × 32 × 100 43.4%

InternLM2-StepProver [52] 1 × 32 × 100 48.8%
64 × 32 × 100 54.5%

DeepSeek-Prover-V1.5-SFT + RMaxTS

1 × 3200 53.5% ± 0.4%
4 × 6400 56.3% ± 0.3%

16 × 6400 59.0%
32 × 6400† 60.2%

DeepSeek-Prover-V1.5-RL + RMaxTS

1 × 3200 55.0% ± 0.7%
4 × 6400 59.6% ± 0.6%

16 × 6400 62.7%
32 × 6400† 63.5%

Table 1 | Comparison with state-of-the-art methods on the miniF2F-test dataset. The notation
𝜇 ± 𝜎 denotes the average accuracy 𝜇 and the standard deviation 𝜎. Unless otherwise specified,
DeepSeek-Prover-V1.5-Base results are based on 3-shot prompting, while DeepSeek-Prover-
V1.5-SFT and RL employ CoT mode prompting. The symbol † indicates performance using a
mixture strategy with two guiding prompts (see Section 4.2 for details).
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Method Sample budget ProofNet
valid‡ test all

Single-pass Whole-Proof Generation Methods

DeepSeek-Prover-V1.5-Base 128 6.6% ± 0.9% 9.7% ± 0.7% 7.5% ± 0.7%
3200 10.8% 15.6% 13.2%

DeepSeek-Prover-V1.5-SFT
128 19.9% ± 0.4% 15.9% ± 0.6% 17.9% ± 0.3%
3200 20.7% ± 0.7% 21.0% ± 0.9% 20.9% ± 0.6%

4 × 6400 22.2% 23.7% 22.9%

DeepSeek-Prover-V1.5-RL
128 20.1% ± 0.5% 18.2% ± 0.5% 19.1% ± 0.4%
3200 21.4% ± 0.3% 22.0% ± 0.5% 21.7% ± 0.4%

4 × 6400 21.6% 23.7% 22.6%

Tree Search Methods

ReProver [55] - - - 13.8%
InternLM2-StepProver [52] 1 × 32 × 100 - - 18.1%

DeepSeek-Prover-V1.5-SFT + RMaxTS 1 × 3200 22.2% ± 0.7% 21.6% ± 0.2% 21.9% ± 0.4%
4 × 6400 23.8% 25.8% 24.8%

DeepSeek-Prover-V1.5-RL + RMaxTS 1 × 3200 22.0% ± 0.3% 21.5% ± 0.8% 21.8% ± 0.4%
4 × 6400 25.4% 25.3% 25.3%

Table 2 | Comparing with state-of-the-arts on the ProofNet dataset. ‡ Note that the validation set
of ProofNet is used to perform expert iteration in supervised fine-tuning.

4.2. Re-Examining the Effectiveness of Training Strategies on Large-scale Sampling

We revisit the effects of several training modules in n a large-scale sampling setting, focusing on
both single-pass whole-proof generation and Monte-Carlo tree search. The results demonstration
that the observations and findings presented in Section 2.4 generalize to sampling scenarios
with a large sample size.

General Enhancement of Reinforcement Learning. To support the claim that online reinforce-
ment learning from verification feedback generally enhances the model capabilities, we compare
our final model to the SFT-only version using a large sample budget. The comparison results are
presented as two columns in Table 3. DeepSeek-Prover-V1.5-RL consistently outperforms the
SFT model across all generation settings, regardless of whether the chain-of-thought strategy is
applied. The results also indicate that the improvements gained from conducting online RL is
orthogonal to those achieved through RMaxTS, which can be further combined to boost the per-
formance. By integrating both CoT prompting and RMaxTS, DeepSeek-Prover-V1.5-RL achieves
a pass rate of 62.7% on miniF2F-test. This performance shows a notable 3.7% improvement over
the SFT model, highlighting the critical role of reinforcement learning in enhancing the overall
effectiveness of the proof completion model.

CoT, non-CoT, and Mixture Strategy. We compare the performance of two generation modes,
i.e., non-CoT and CoT, on miniF2F-test dataset. The results, shown in Table 3, indicate that the
advantage of CoT over the non-CoT mode is amplified as the sample budget increases. This
suggests that the incorporation of natural language chain-of-thought can diversify the planning
pathways of theorem proving, potentially leading to a broader range of reasoning strategies
and more innovative solutions. Results also show that these two modes have complementary
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Prompt mode Sample budget DeepSeek-Prover-V1.5
SFT RL

non-CoT 4 × 6400 54.7% ± 0.4% 56.5% ± 0.5%
16 × 6400 56.1% 57.4%

Single-Pass CoT 4 × 6400 55.8% ± 0.7% 58.4% ± 0.5%

Generation 16 × 6400 57.4% 60.2%

non-CoT & CoT
(2 + 2) × 6400 56.1% ± 0.8% 58.3% ± 0.6%
(8 + 8) × 6400 58.2% 60.7%

(16 + 16) × 6400 58.6% 61.1%

RMaxTS

non-CoT 4 × 6400 55.7% ± 0.6% 58.4% ± 0.6%
16 × 6400 57.8% 59.4%

CoT 4 × 6400 56.3% ± 0.3% 59.6% ± 0.6%
16 × 6400 59.0% 62.7%

non-CoT & CoT
(2 + 2) × 6400 56.1% ± 0.8% 60.0% ± 0.8%
(8 + 8) × 6400 59.0% 63.1%

(16 + 16) × 6400 60.2% 63.5%

Table 3 | A large-scale ablation study to investigate the effectiveness of several algorithmic
designs on model training. The results are evaluated on the miniF2F-test dataset.

advantages across different problems. The model’s theorem proving strategy in the CoT mode
is more systematic and proactive in mathematical thinking, while in the non-CoT mode, the
model can efficiently use Lean high-level tactics to solve computational problems that can be
addressed within Lean’s automation mechanisms. To leverage these advantages, we consider
a mixture strategy, denoted by non-CoT & CoT in Table 3, allocates half of sample budget to
the CoT mode and the remains to the non-CoT mode. This simple combination of two guiding
prompts shows great promise in further bootstrapping the performance of our proof completion
model, achieving a pass rate of 63.5% on miniF2F-test. In Appendix B, we present example
problems that illustrate the different advantages of the two generation modes.

4.3. Ablation Studies on RMaxTS

Intrinsic Rewards and Discounted UCB. We investigate the effectiveness of two core com-
ponents of RMaxTS, i.e., the intrinsic rewards defined in Eq. (3) and the discounted upper
confidence bound stated in Eq. (7). We start with a baseline implementing the standard UCT
algorithm (Kocsis and Szepesvári, 2006) without intrinsic rewards, in which the exploration is
driven exclusively by the UCB bonus. Note that, since no non-zero rewards are provided for this
baseline, all variants of the UCB formula become equivalent, as node selection is determined
solely by visitation counts. The experimental results in Figure 5 show that, in the absence of
intrinsic rewards, the performance of UCT (without 𝑅intrinsic) degenerates into a level comparable
to that of non-search methods. Furthermore, we consider RMaxTS using the standard UCB1
(refer to Eq. (4)) instead of the discounted UCB, denoted by RMaxTS (DUCB → UCB1). The
results indicate that the performance of RMaxTS with UCB1 bonus is also moderate, comparable
to that of UCT (without 𝑅intrinsic). That is because UCB1 is designed to guarantee asymptotic
performance through exhausted exploration (Auer et al., 2002) assuming the sample size to
be sufficiently large. In contrast, the discounted UCB can accelerate the value propagation of
non-stationary intrinsic rewards, preventing the guidance of 𝑅intrinsic from being dominated by
that of visitation counts. This demonstrates that the discounted UCB mechanism is a crucial
complement to intrinsic-reward-driven exploration.
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16 × 6400 62.7%

Figure 5 | A modular ablation study examining the algorithmic design of RMaxTS. The experi-
ments are conducted on the miniF2F-test dataset with DeepSeek-Prover-V1.5-RL using the CoT
mode. The left panel presents the curves of Pass@K accuracy within 6400 generation samples.
The results with a larger sample size are presented in the right panel.

Guidance of Tactic State Information. When expanding a tree node, we concatenate the
intermediate tactic state information as a comment block to the incomplete code to guide the
proof completion. With the provided auxiliary information, the proof completion model can
enhance its internal representation of the tactic state, offering intermediate guidance for long-
horizon planning. To demonstrate this advantage, we present experiments on RMaxTS that
performs code completion directly from the raw incomplete code without accessing tactic state
information, denoted by RMaxTS (without tactic state) in Figure 5. The results indicate that the
performance gain from applying tree search becomes moderate in the absence of tactic state
information, especially when tackling hard problems that require a large amount of samples.
This highlights that the integration of compiler information is an essential component of the tree
search algorithm, enhancing its overall effectiveness and sample efficiency.

5. Conclusion, Limitation, and Future Work

We present DeepSeek-Prover-V1.5, a language model with 7 billion parameters that outperforms
all open-source models in formal theorem proving in Lean 4. DeepSeek-Prover-V1.5 is initial-
ized with DeepSeek-Prover-V1.5-Base, which extends the pre-training of DeepSeekMath-Base
7B using a specialized corpus for formal mathematical reasoning. Supervised fine-tuning is
conducted on a comprehensive Lean 4 code completion dataset, encompassing a wide range
of formal theorems from various mathematical domains. Subsequently, we employ GRPO to
enhance whole-proof generation through online reinforcement learning. Upon developing the
DeepSeek-Prover-V1.5 model, we introduce RMaxTS, a variant of Monte-Carlo tree search, to
improve problem-solving capabilities via large-scale search with extensive exploration. These
components form a comprehensive pipeline for training an LLM-based proof assistant, enabling
DeepSeek-Prover-V1.5 to achieve significant improvements over DeepSeek-Prover-V1.

The framework of DeepSeek-Prover-V1.5 is designed to establish an AlphaZero-like pipeline
for formal theorem proving. The use of expert iteration and synthetic data mirrors the core
trial-and-error loop of reinforcement learning, with the compiler oracle serving as the world
model to provide environmental supervision. Within the RL paradigm, the integrated tree
search module has proven to be highly effective in advancing superhuman performance across
various domains (Silver et al., 2016; Fawzi et al., 2022; Lutz et al., 2023). In developing DeepSeek-
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Prover-V1.5, we focus on the exploration aspect of RL, introducing RMaxTS to diversify the
generation of proof steps. However, the exploitation aspect, specifically the problem of proof
search, remains unexplored. A promising future direction is training a critic model to assess
incomplete proofs and prune search branches. Such a partial-proof critic model would implicitly
perform temporal credit assignment (Sutton, 1984), decomposing proof-level feedback into step-
wise value differences (Arjona-Medina et al., 2019). Developing critic models for assessing long
planning paths and providing guidance rewards presents a crucial and challenging problem
(Ng and Russell, 2000; Sorg et al., 2010) that warrants further investigation.

Finally, recent work has progressed beyond proving individual theorems to addressing
real-world theory proving within complex, multi-theorem Lean files (Hu et al., 2024). This shift
is a natural extension of our whole-proof generation approach. Our observations indicate that
the current model already possesses some understanding of file-level context. Moving forward,
we will focus on enhancing this aspect to support cutting-edge Lean mathematical formalization
developers with our language model advancements.
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A. Illustrative Examples of Non-CoT and CoT Prompting for Proof Completion

In this section, we present examples of non-CoT and CoT prompting and the generated proofs
for aime_1983_p9, a problem from the miniF2F benchmark (Zheng et al., 2022). For clarity, inline
LaTeX expressions are utilized. Firstly, here is an example of whole-proof generation in non-CoT
prompting mode:

Input:

Complete the following Lean 4 code:

‘‘‘lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- Show that 9𝑥2 sin2 𝑥+4
𝑥 sin 𝑥 ⩾ 12 for 0 < 𝑥 < 𝜋.-/

theorem aime_1983_p9 (x : R) (h0 : 0 < x ∧ x < Real.pi) :
12 ⩽ (9 * (x ^ 2 * Real.sin x ^ 2) + 4) / (x * Real.sin x) := by

Output:

rw [le_div_iff (mul_pos h0.1 (Real.sin_pos_of_pos_of_lt_pi h0.1 h0.2))]
nlinarith [mul_self_nonneg (3 * x * Real.sin x - 2)]

‘‘‘

Next, here is an example of whole-proof generation in CoT prompting mode. This proof was
found using a Monte-Carlo tree search with a truncate-and-resume mechanism (see Section 3
for details). The model receives a prompt including a proof code in progress, ending with a
comment block containing the intermediate tactic state from the Lean 4 prover. The subsequent
code is generated with guidance from this annotated code prefix.

Input:

Complete the following Lean 4 code with explanatory comments preceding each
line of code:

‘‘‘lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- Show that 9𝑥2 sin2 𝑥+4
𝑥 sin 𝑥 ⩾ 12 for 0 < 𝑥 < 𝜋.-/

theorem aime_1983_p9 (x : R) (h0 : 0 < x ∧ x < Real.pi) :
12 ⩽ (9 * (x ^ 2 * Real.sin x ^ 2) + 4) / (x * Real.sin x) := by
/-
To find the minimum value of 9𝑥2 sin2 𝑥+4

𝑥 sin 𝑥 for 0 < 𝑥 < 𝜋, we need to show that it
is at least 12. We start by noting that the expression can be rewritten
using the division property of inequalities. We then use the fact that sin 𝑥
and 𝑥 are positive in the given range to establish the necessary
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inequalities. Finally, we apply these results to conclude that the minimum
value is indeed 12.

-/
-- We start by ensuring that the product 𝑥 ∗ sin 𝑥 is positive in the given

range.
have h1 : 0 < x * Real.sin x := by

apply mul_pos
-- 𝑥 is positive in the range (0,𝜋).
exact h0.1
-- sin 𝑥 is positive in the range (0,𝜋).
exact Real.sin_pos_of_pos_of_lt_pi h0.1 h0.2

-- Using the division property of inequalities, we rewrite the expression.
rw [le_div_iff h1]
/- tactic state:

x : R

h0 : 0 < x ∧ x < 𝜋

h1 : 0 < x * x.sin
⊢ 12 * (x * x.sin) ⩽ 9 * (x ^ 2 * x.sin ^ 2) + 4

-/

Output:

-- This is equivalent to showing that 9𝑥2 sin2 𝑥 − 12𝑥 sin 𝑥 + 4 ⩾ 0, and the
left-hand side can be rewritten as a perfect square (3𝑥 sin 𝑥 − 2)2.

-- We use the fact that (3𝑥 sin 𝑥 − 2)2 is non-negative to establish this.
nlinarith [sq_nonneg (3 * x * Real.sin x - 2)]

‘‘‘

In this case, the proof completion model first extracts the goal expression from the tactic
state, i.e., the inequality 12(𝑥 sin 𝑥) ⩽ 9(𝑥2 sin2 𝑥) + 4 at the last line of the comment block, and
then arranges it into the form 9𝑥2 sin2 𝑥 − 12𝑥 sin 𝑥 + 4 ⩾ 0 as part of the chain-of-thought process.
Finally, the left-hand side is rewritten as a square term to establish non-negativity, closing the
proof.

B. Example Solutions to MiniF2F-test Problems

To illustrate the different advantages and complementary of non-CoT mode and CoT mode of
prompting, we provide examples where non-CoT mode succeeds while CoT mode fails, and
vice versa.

B.1. Problems that non-CoT outperforms CoT

theorem induction_pord1p1on2powklt5on2 (n : N) (h0 : 0 < n) :
(Π k in Finset.Icc 1 n, 1 + (1 : R) / 2 ^ k) < 5 / 2 := by

rw [Finset.Icc]
simp_all [Nat.succ_le_iff, Nat.one_le_iff_ne_zero]
have h1 : 0 < 2 ^ k := by apply pow_pos <;> norm_num
norm_num
have h2 : (2 : R) ≠ 0 := by norm_num
field_simp
rw [div_lt_div_iff]
ring_nf
norm_cast
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nlinarith
all_goals norm_cast
all_goals linarith

theorem imo_1960_p2 (x : R) (h0 : 0 ⩽ 1 + 2 * x) (h1 : (1 - Real.sqrt (1 + 2 *
x)) ^ 2 ≠ 0)
(h2 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 < 2 * x + 9) : -(1 / 2)
⩽ x ∧ x < 45 / 8 := by

norm_num at h0 h1 h2
have h3 : 0 ⩽ 1 + 2 * x := by linarith
have h4 : 0 < 1 + Real.sqrt (1 + 2 * x) := by

nlinarith [Real.sqrt_nonneg (1 + 2 * x)]
have h5 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 < 2 * x + 9 := by

linarith
have h6 : 1 - Real.sqrt (1 + 2 * x) ≠ 0 := by

intro h
apply h1
nlinarith

have h7 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 = (1 + Real.sqrt (1 +
2 * x)) ^ 2 := by
field_simp [h6]
nlinarith [sq_sqrt (show 0 ⩽ 1 + 2 * x by linarith)]

rw [h7] at h5
constructor <;> nlinarith [sq_sqrt (show 0 ⩽ 1 + 2 * x by linarith)]

B.2. Problems that CoT outperforms non-CoT

theorem mathd_algebra_459 (a b c d : Q) (h0 : 3 * a = b + c + d) (h1 : 4 * b =
a + c + d)
(h2 : 2 * c = a + b + d) (h3 : 8 * a + 10 * b + 6 * c = 24) : ↑d.den +

d.num = 28 := by
/-
Given the system of equations involving the times that Anna (a), Bertram

(b), Carli (c), and David (d) can hold their breaths:
1. 3𝑎 = 𝑏 + 𝑐 + 𝑑
2. 4𝑏 = 𝑎 + 𝑐 + 𝑑
3. 2𝑐 = 𝑎 + 𝑏 + 𝑑
4. 8𝑎 + 10𝑏 + 6𝑐 = 24
We need to find the sum of the numerator and the denominator of the

fraction representing David’s time in minutes, simplified to its lowest
terms, and show that it is 28.

First, we solve the system of equations step by step:
- From the first equation, we can express 𝑑 in terms of 𝑎, 𝑏, and 𝑐:

𝑑 = 3𝑎 − 𝑏 − 𝑐

- Substitute 𝑑 into the second equation:
4𝑏 = 𝑎 + 𝑐 + (3𝑎 − 𝑏 − 𝑐)
Simplifying, we get:
4𝑏 = 4𝑎 − 𝑏
5𝑏 = 4𝑎
𝑏 = 4𝑎

5
- Substitute 𝑏 into the third equation:

2𝑐 = 𝑎 + 4𝑎
5 + (3𝑎 − 𝑏 − 𝑐)

Simplifying, we get:
2𝑐 = 𝑎 + 4𝑎

5 + 3𝑎 − 4𝑎
5 − 𝑐
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2𝑐 = 4𝑎 − 𝑐

3𝑐 = 4𝑎
𝑐 = 4𝑎

3
- Substitute 𝑏 and 𝑐 into the fourth equation:

8𝑎 + 10
(

4𝑎
5

)
+ 6

(
4𝑎
3

)
= 24

Simplifying, we get:
8𝑎 + 8𝑎 + 8𝑎 = 24
24𝑎 = 24
𝑎 = 1

Now, we find 𝑏 and 𝑐:
- 𝑏 = 4𝑎

5 = 4
5

- 𝑐 = 4𝑎
3 = 4

3
Finally, we find 𝑑:
- 𝑑 = 3𝑎 − 𝑏 − 𝑐 = 3 · 1 − 4

5 − 4
3 = 3 − 4

5 − 4
3 = 45

15 − 12
15 − 20

15 = 13
15

The fraction 13
15 is already in its simplest form, and the sum of the

numerator and the denominator is:
13 + 15 = 28
-/
have h4 : a = 1 := by

have h5 : 8 * a + 10 * b + 6 * c = 24 := h3
have h6 : 24 * a = 24 := by

-- Solve the system of equations to find the value of a
linarith

exact mul_right_cancel0 (show (24 : Q) ≠ 0 by norm_num)
(by linarith)

have h5 : b = 4 / 5 := by
-- Solve for b using the value of a
linarith

have h6 : c = 4 / 3 := by
-- Solve for c using the value of a
linarith

have h7 : d = 13 / 15 := by
-- Solve for d using the values of a, b, and c
linarith

-- Sum the numerator and the denominator of d
norm_num [h7]
<;> rfl

theorem numbertheory_x5neqy2p4 (x y : Z) : x ^ 5 ≠ y ^ 2 + 4 := by
/-
To show that for any two integers 𝑥 and 𝑦, 𝑥5 ≠ 𝑦2 + 4, we can use modular

arithmetic to demonstrate that the equation 𝑥5 ≡ 𝑦2 + 4 (mod 11) has no
solutions. Specifically, we will consider the possible values of 𝑥 and 𝑦

modulo 11 and show that none of these combinations satisfy the equation.
-/
-- Use modular arithmetic to show that the equation has no solutions modulo

11.
have : ¬(x ^ 5 % 11 = (y ^ 2 + 4) % 11) := by

-- Consider all possible values of x modulo 11.
have : x % 11 = 0 ∨ x % 11 = 1 ∨ x % 11 = 2 ∨ x % 11 = 3 ∨ x % 11 = 4 ∨ x

% 11 = 5 ∨
x % 11 = 6 ∨ x % 11 = 7 ∨ x % 11 = 8 ∨ x % 11 = 9 ∨ x % 11 = 10 := by

omega
-- Consider all possible values of y modulo 11.
have : y % 11 = 0 ∨ y % 11 = 1 ∨ y % 11 = 2 ∨ y % 11 = 3 ∨ y % 11 = 4 ∨ y
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% 11 = 5 ∨
y % 11 = 6 ∨ y % 11 = 7 ∨ y % 11 = 8 ∨ y % 11 = 9 ∨ y % 11 = 10 := by

omega
-- For each combination of x and y modulo 11, check if the equation holds.
rcases this with (h | h | h | h | h | h | h | h | h | h | h) <;>

rcases this with (h’ | h’ | h’ | h’ | h’ | h’ | h’ | h’ | h’ | h’ | h’) <;>
simp [h, h’, pow_succ, Int.mul_emod, Int.add_emod]

-- Use the result from modular arithmetic to conclude the theorem.
omega

theorem amc12_2000_p12 (a m c : N) (h0 : a + m + c = 12) :
a * m * c + a * m + m * c + a * c ⩽ 112 := by

/-
Given nonnegative integers 𝐴, 𝑀, and 𝐶 such that 𝐴 + 𝑀 + 𝐶 = 12, we need to find

the maximum value of 𝐴 · 𝑀 · 𝐶 + 𝐴 · 𝑀 + 𝑀 · 𝐶 + 𝐴 · 𝐶.
To solve this, we can use the fact that the expression 𝐴 · 𝑀 · 𝐶 + 𝐴 · 𝑀 + 𝑀 · 𝐶 + 𝐴 · 𝐶

is a polynomial in terms of 𝐴, 𝑀, and 𝐶. We can try different values of 𝐴, 𝑀,
and 𝐶 that sum to 12 and compute the value of the polynomial for each

combination. The maximum value of the polynomial will then be the solution.
-/
-- We use a lemma that states if the sum of three numbers is less than or

equal to a certain value, then the product of these numbers is also less
than or equal to a certain value.

have h1 : a ⩽ 12 ∧ m ⩽ 12 ∧ c ⩽ 12 := by
constructor
· -- Since a + m + c = 12, a cannot be greater than 12.

omega
· constructor

· -- Similarly, m cannot be greater than 12.
omega

· -- And c cannot be greater than 12.
omega

-- Using the lemma, we compute the value of the polynomial for different
values of a, m, and c that sum to 12.

cases’ h1 with h1_left h1_right
cases’ h1_right with h1_middle h1_right
-- We use interval_cases to try different values of a, m, and c.
interval_cases a <;> interval_cases m <;> interval_cases c <;>

-- For each combination, we compute the value of the polynomial and check
if it is less than or equal to 112.
simp_all (config := {decide := true})
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