DeepSeek-MoE/finetune/finetune.py

323 lines
13 KiB
Python
Raw Permalink Normal View History

2024-01-11 02:35:17 +00:00
import copy
import random
from dataclasses import dataclass, field
from typing import Optional, Dict, Sequence
import logging
import os
import torch
import torch.distributed
import transformers
from transformers import Trainer, BitsAndBytesConfig
from datasets import load_dataset
import datasets
import numpy as np
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel
from peft.tuners.lora import LoraLayer
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
IGNORE_INDEX = -100
EOT_TOKEN = "<|EOT|>"
logger = logging.getLogger(__name__)
def build_instruction_prompt(instruction: str):
return '''
You are an AI assistant, developed by DeepSeek Company. For politically sensitive questions, security and privacy issues, you will refuse to answer.
### Instruction:
{}
### Response:
'''.format(instruction.strip()).lstrip()
@dataclass
class ModelArguments:
trainable : Optional[str] = field(default="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj")
lora_rank : Optional[int] = field(default=8)
lora_dropout : Optional[float] = field(default=0.1)
lora_alpha : Optional[float] = field(default=32.)
modules_to_save : Optional[str] = field(default="embed_tokens,lm_head")
use_lora : Optional[bool] = field(default=False)
model_name_or_path: Optional[str] = field(default="deepseek-ai/deepseek-moe-16b")
attn_implementation : Optional[str] = field(default="flash_attention_2")
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."}
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
)
bits: int = field(
default=16,
metadata={"help": "How many bits to use."}
)
@dataclass
class DataArguments:
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=512,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
class SavePeftModelCallback(transformers.TrainerCallback):
def save_model(self, args, state, kwargs):
logger.info('Saving PEFT checkpoint...')
if state.best_model_checkpoint is not None:
checkpoint_folder = os.path.join(state.best_model_checkpoint, "adapter_model")
else:
checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
peft_model_path = os.path.join(checkpoint_folder, "adapter_model")
kwargs["model"].save_pretrained(peft_model_path)
kwargs["tokenizer"].save_pretrained(peft_model_path)
def on_save(self, args, state, control, **kwargs):
self.save_model(args, state, kwargs)
return control
def on_train_end(self, args, state, control, **kwargs):
def touch(fname, times=None):
with open(fname, 'a'):
os.utime(fname, times)
touch(os.path.join(args.output_dir, 'completed'))
self.save_model(args, state, kwargs)
def get_last_checkpoint(checkpoint_dir):
if os.path.isdir(checkpoint_dir):
is_completed = os.path.exists(os.path.join(checkpoint_dir, 'completed'))
if is_completed: return None # already finished
max_step = 0
for filename in os.listdir(checkpoint_dir):
if os.path.isdir(os.path.join(checkpoint_dir, filename)) and filename.startswith(PREFIX_CHECKPOINT_DIR):
max_step = max(max_step, int(filename.replace(PREFIX_CHECKPOINT_DIR + '-', '')))
if max_step == 0: return None
latest_ckpt_dir = os.path.join(checkpoint_dir, f'{PREFIX_CHECKPOINT_DIR}-{max_step}')
logger.info(f"Found a previous checkpoint at: {checkpoint_dir}")
return latest_ckpt_dir
return None # first training
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
# return_tensors="pt",
max_length=tokenizer.model_max_length,
truncation=True,
)
for text in strings
]
input_ids = labels = [np.array(tokenized.input_ids) for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
len(tokenized.input_ids) for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def preprocess(
sources: Sequence[str],
targets: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
"""Preprocess the data by tokenizing."""
examples = [s + t for s, t in zip(sources, targets)]
examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
input_ids = examples_tokenized["input_ids"]
labels = copy.deepcopy(input_ids)
for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
label[:source_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=labels)
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
input_ids = [torch.tensor(x) for x in input_ids]
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = [torch.tensor(x) for x in labels]
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
def train_tokenize_function(examples, tokenizer):
sources = [
build_instruction_prompt(instruction)
for instruction in examples['instruction']
]
targets = [f"{output}\n{EOT_TOKEN}" for output in examples['output']]
data_dict = preprocess(sources, targets, tokenizer)
return data_dict
def build_model(model_args, training_args, checkpoint_dir):
if not model_args.use_lora: assert model_args.bits in [16, 32]
compute_dtype = (torch.bfloat16 if training_args.bf16 else torch.float16)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
load_in_4bit=model_args.bits == 4,
load_in_8bit=model_args.bits == 8,
quantization_config=BitsAndBytesConfig(
load_in_4bit=model_args.bits == 4,
load_in_8bit=model_args.bits == 8,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=model_args.double_quant,
bnb_4bit_quant_type=model_args.quant_type,
2024-01-16 12:17:59 +00:00
) if model_args.use_lora else None,
2024-01-11 02:35:17 +00:00
torch_dtype=compute_dtype,
trust_remote_code=True,
)
if compute_dtype == torch.float16 and model_args.bits == 4:
if torch.cuda.is_bf16_supported():
logger.info('='*80)
logger.info('Your GPU supports bfloat16, you can accelerate training with the argument --bf16')
logger.info('='*80)
setattr(model, 'model_parallel', True)
setattr(model, 'is_parallelizable', True)
model.config.torch_dtype=torch.bfloat16 if training_args.bf16 else torch.float32
# Tokenizer
if model_args.use_lora and model_args.bits < 16:
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
if model_args.use_lora:
if checkpoint_dir is not None:
logger.info(f"Loading adapters from {checkpoint_dir}.")
# os.path.join(checkpoint_dir, 'adapter_model')
model = PeftModel.from_pretrained(model, checkpoint_dir, is_trainable=True)
else:
logger.info(f'Init LoRA modules...')
target_modules = model_args.trainable.split(',')
modules_to_save = model_args.modules_to_save
if modules_to_save is not None:
modules_to_save = modules_to_save.split(',')
lora_rank = model_args.lora_rank
lora_dropout = model_args.lora_dropout
lora_alpha = model_args.lora_alpha
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=target_modules,
inference_mode=False,
r=lora_rank, lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
modules_to_save=modules_to_save)
model = get_peft_model(model, peft_config)
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if training_args.bf16:
module = module.to(torch.bfloat16)
if 'norm' in name or 'gate' in name:
module = module.to(torch.float32)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight'):
if training_args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
return model
def train():
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
if training_args.local_rank == 0:
logger.info('='*100)
logger.info(training_args)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=True,
trust_remote_code=True
)
logger.info("PAD Token:", tokenizer.pad_token, tokenizer.pad_token_id)
logger.info("BOS Token", tokenizer.bos_token, tokenizer.bos_token_id)
logger.info("EOS Token", tokenizer.eos_token, tokenizer.eos_token_id)
if training_args.local_rank == 0:
logger.info("Load tokenizer from {} over.".format(model_args.model_name_or_path))
resume_from_checkpoint_dir = get_last_checkpoint(training_args.output_dir)
model = build_model(model_args, training_args, resume_from_checkpoint_dir)
raw_train_datasets = load_dataset(
'parquet',
data_files=data_args.data_path,
split="train",
cache_dir=training_args.cache_dir
)
if training_args.local_rank > 0:
torch.distributed.barrier()
train_dataset = raw_train_datasets.map(
train_tokenize_function,
batched=True,
batch_size=3000,
num_proc=32,
remove_columns=raw_train_datasets.column_names,
load_from_cache_file=True, # not args.overwrite_cache
desc="Running Encoding",
fn_kwargs={ "tokenizer": tokenizer }
)
if training_args.local_rank == 0:
torch.distributed.barrier()
if training_args.local_rank == 0:
logger.info("Training dataset samples:", len(train_dataset))
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]['input_ids']}, {train_dataset[index]['labels']}.")
logger.info(f"Sample {index} of the training set: {tokenizer.decode(list(train_dataset[index]['input_ids']))}.")
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
data_module = dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
if model_args.use_lora:
trainer.add_callback(SavePeftModelCallback)
trainer.train(resume_from_checkpoint = resume_from_checkpoint_dir)
trainer.save_state()
if not model_args.use_lora:
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
train()