DeepSeek-Math/evaluation/infer/run_tool_integrated_eval.py
2024-02-09 15:23:28 +08:00

331 lines
15 KiB
Python
Executable File

import argparse
import os
import sys
import_path = os.path.abspath(__file__)
for _ in range(2):
import_path = os.path.dirname(import_path)
sys.path.append(import_path)
from tqdm import tqdm
import regex
import json
import random
from copy import deepcopy
from functools import partial
from vllm import LLM, SamplingParams
from pebble import ProcessPool
from concurrent.futures import TimeoutError
from eval.utils import generate_completions, load_hf_lm_and_tokenizer
from eval.python_executor import PythonExecutor
from transformers import AutoTokenizer
from data_processing.answer_extraction import *
from eval.eval_script import *
from few_shot_prompts import *
def extract_code(text):
if not text.strip().endswith("```"):
return ""
if text.startswith("```python"):
text = "hey\n" + text
blocks = [block.split("```", 1)[0].strip() for block in text.split("```python") if '```' in block]
blocks = [block for block in blocks if block]
if not blocks:
return ""
code = []
for block in blocks[:-1]:
for line in block.split("\n"):
if line.startswith(" ") or line.startswith("import") or line.startswith("def "):
code.append(line)
elif 'print(' not in line:
code.append(line)
code = "\n".join(code) + "\n" + blocks[-1]
return code.strip()
def finish_answer_prediction(text):
patt = regex.search(r"\\boxed{(?P<ans>.+)}", text)
return patt is not None and patt.group('ans').strip()
def evaluate(eval_fn, tasks, _timeout=15):
with ProcessPool() as pool:
timeout_cnt = 0
iterator = pool.map(eval_fn, tasks, timeout=_timeout).result()
labels = []
while True:
try:
labels.append(int(next(iterator)))
except StopIteration:
break
except TimeoutError as error:
labels.append(0)
timeout_cnt += 1
except Exception as error:
print(error.traceback, flush=True)
exit()
return labels, timeout_cnt
def infer(args, test_data):
if args.prompt_format == 'few_shot':
assert args.few_shot_prompt is not None
prompting = eval(args.few_shot_prompt)()
prompts = []
for example in test_data:
prompt = ""
if args.prompt_format == 'few_shot':
prompt = prompting.format_prompt(example['messages'][-2]['content'], example['messages'][-1]['content'])
else:
for mess in example['messages']:
if args.prompt_format == 'sft':
if mess['role'] == 'user':
prompt += f"User: {mess['content'].strip()}\n\nAssistant:"
elif mess['role'] == 'assistant':
prompt += mess['content'].strip()
else:
raise NotImplementedError()
prompt = prompt.lstrip()
example['prompt'] = prompt
prompts.append(prompt.lstrip())
model_outputs = [item['messages'][-1]['content'].strip() for item in test_data]
unfinished_ids = list(range(len(prompts)))
executor = PythonExecutor(get_answer_from_stdout=True)
n_iters = 2
global model, tokenizer
while n_iters and unfinished_ids:
model_inputs = [prompts[i] for i in unfinished_ids]
finish_completion = None
print("Loading model and tokenizer...")
if args.use_vllm:
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path, trust_remote_code=True)
print(f"{'-' * 20} prompt_to_ids {'-' * 20}\n{tokenizer.encode(model_inputs[0])}\n{'-' * 50}", flush=True)
print(f"eos_token: {tokenizer.eos_token}", flush=True)
if model is None:
model = LLM(model=args.model_name_or_path, tokenizer=args.tokenizer_name_or_path, trust_remote_code=True, tensor_parallel_size=len(os.environ['CUDA_VISIBLE_DEVICES'].split(",")))
stop_words = [tokenizer.eos_token if tokenizer is not None and tokenizer.eos_token is not None else '</s>']
if not args.no_execution:
stop_words.append("```output")
if args.prompt_format == 'few_shot':
stop_words.extend(prompting.stop_words())
outputs = model.generate(model_inputs, SamplingParams(temperature=args.temperature, top_p=1.0, max_tokens=1024, n=1, stop=stop_words))
outputs = sorted(outputs, key=lambda x: int(x.request_id)) # sort outputs by request_id
finish_completion = [output.outputs[0].token_ids[-1] == tokenizer.eos_token_id for output in outputs]
outputs = [output.outputs[0].text for output in outputs]
else:
if model is None or tokenizer is None:
model, tokenizer = load_hf_lm_and_tokenizer(
model_name_or_path=args.model_name_or_path,
tokenizer_name_or_path=args.tokenizer_name_or_path,
load_in_8bit=args.load_in_8bit,
load_in_half=args.load_in_half,
gptq_model=args.gptq
)
stop_id_sequences = [tokenizer.encode("```output", add_special_tokens=False)]
if tokenizer.eos_token_id is not None:
stop_id_sequences.append([tokenizer.eos_token_id])
outputs, finish_completion = generate_completions(
model=model,
tokenizer=tokenizer,
prompts=model_inputs,
max_new_tokens=512,
batch_size=args.eval_batch_size,
stop_id_sequences=stop_id_sequences,
end_of_generation_id_sequence=[tokenizer.eos_token_id] if tokenizer.eos_token_id is not None else None
)
if len(unfinished_ids) != len(outputs):
print(f"input-output mismatch >>> {len(unfinished_ids)} != {len(outputs)}", flush=True)
print(f"----- DEBUG -----\ninputs:\n{model_inputs[:10]}\noutputs:\n{str(outputs[:10])}\n----- DEBUG -----\n", flush=True)
raise RuntimeError()
if finish_completion is None:
finish_completion = [finish_answer_prediction(output) for output in outputs]
print("extract code ...", flush=True)
codes = []
code_indices = []
for i, output, is_finished in zip(unfinished_ids, outputs, finish_completion):
output = output.rstrip()
if not args.no_execution and not is_finished:
code = extract_code(model_outputs[i] + output)
if code:
codes.append(code)
code_indices.append(i)
prompts[i] += output
model_outputs[i] += output
print(f"execute {len(codes)} code snippets ...", flush=True)
batch_results = executor.batch_apply(codes)
for i, (exec_result, metadata) in zip(code_indices, batch_results):
exec_result = str(exec_result).strip()
if len(exec_result) > 100:
exec_result = exec_result[:50] + "..." + exec_result[-50:]
runtime_msg = str(metadata['concise_exec_info']).strip() if args.use_concise_exec_info else str(metadata['exec_info']).strip()
if not exec_result:
runtime_msg = str(runtime_msg).strip()
if args.use_concise_exec_info:
if len(runtime_msg) > 100:
runtime_msg = runtime_msg[:50] + "..." + runtime_msg[-50:]
exec_result = runtime_msg
else:
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path or args.tokenizer_name_or_path, trust_remote_code=True)
tokens = tokenizer.tokenize(runtime_msg)
if len(tokens) > 100:
runtime_msg = f"{tokenizer.convert_tokens_to_string(tokens[:50]).strip()} ... {tokenizer.convert_tokens_to_string(tokens[-50:]).strip()}"
exec_result = f"Runtime errors: {runtime_msg}"
prompts[i] += f"\n```output\n{exec_result.strip()}\n```\n"
model_outputs[i] += f"\n```output\n{exec_result.strip()}\n```\n"
unfinished_ids = [i for i, is_finished in zip(unfinished_ids, finish_completion) if not is_finished]
n_iters -= 1
predictions = [eval(args.answer_extraction_fn)(item['messages'][-2]['content'], output, task='interleave') for item, output in tqdm(zip(test_data, model_outputs), desc="extract answer", total=len(model_outputs))]
program_outputs = [extract_program_output(output) for output in tqdm(model_outputs, desc='extract program output', total=len(model_outputs))]
assert len(model_outputs) > 0, f"{len(model_outputs)}"
results = []
for example, output, pred, program_output in zip(test_data, model_outputs, predictions, program_outputs):
item = deepcopy(example)
item.update({
'model_output': output,
'prediction': pred,
'program_output': program_output,
})
results.append(item)
return results
def main(args):
random.seed(42)
print("Loading data...")
test_data = []
with open(os.path.join(args.data_dir, f"train.jsonl" if args.infer_train_set else f"test.jsonl")) as fin:
for line in fin:
example = json.loads(line)
messages = example['messages']
assert len(messages) in [2, 3]
assert messages[-1]['role'] == 'assistant'
if not args.complete_partial_output:
example['reference'] = example.get('reference', '') or messages[-1]['content']
messages[-1]['content'] = ''
example['messages'] = messages
test_data.append(example)
if args.max_num_examples and len(test_data) > args.max_num_examples:
test_data = random.sample(test_data, args.max_num_examples)
if args.n_subsets > 1:
assert args.subset_id >= 0 and args.subset_id < args.n_subsets
test_data = [item for i, item in enumerate(test_data) if i % args.n_subsets == args.subset_id]
if not test_data:
return
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir, exist_ok=True)
results = [[item] for item in infer(args, test_data)]
all_items = []
for items in results:
for item in items:
all_items.append(item)
labels, eval_timeout_cnt = evaluate(eval(args.eval_fn), all_items)
for item, label in zip(all_items, labels):
item['accuracy'] = label
program_labels, program_eval_timeout_cnt = evaluate(partial(eval(args.eval_fn), pred_key='program_output'), all_items)
for item, label in zip(all_items, program_labels):
item['program_accuracy'] = label
_results = []
for items in tqdm(results, desc='eval', total=len(results)):
item = items[-1]
item['history'] = items[:-1]
_results.append(item)
results = _results
print("Calculating accuracy...")
acc = 0
program_acc = 0
for item in results:
acc += item['accuracy']
program_acc += item['program_accuracy']
print("output acc = {:.5f}; program acc = {:.5f}".format(acc / len(results) * 100, program_acc / len(results) * 100), flush=True)
print(f"Timeout count >>> output eval = {eval_timeout_cnt}; program eval = {program_eval_timeout_cnt}", flush=True)
pred_fname = "predictions.json"
if args.n_subsets > 1:
pred_fname = f"predictions.{args.subset_id}.json"
with open(os.path.join(args.save_dir, pred_fname), "w") as fout:
json.dump(results, fout, ensure_ascii=True)
metric_fname = "metrics.json"
if args.n_subsets > 1:
metric_fname = f"metrics.{args.subset_id}.json"
with open(os.path.join(args.save_dir, metric_fname), "w") as fout:
json.dump({
"n_samples": len(results),
"accuracy": sum(item['accuracy'] for item in results) / len(results),
"program_accuracy": sum(item['program_accuracy'] for item in results) / len(results)
}, fout, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data/mgsm")
parser.add_argument("--max_num_examples", type=int, default=None, help="maximum number of examples to evaluate.")
parser.add_argument("--save_dir", type=str, default="results/mgsm")
parser.add_argument("--model_name_or_path", type=str, default=None, help="if specified, we will load the model to generate the predictions.")
parser.add_argument("--tokenizer_name_or_path", type=str, default=None, help="if specified, we will load the tokenizer from here.")
parser.add_argument("--eval_batch_size", type=int, default=1, help="batch size for evaluation.")
parser.add_argument("--load_in_8bit", action="store_true", help="load model in 8bit mode, which will reduce memory and speed up inference.")
parser.add_argument("--gptq", action="store_true", help="If given, we're evaluating a 4-bit quantized GPTQ model.")
parser.add_argument("--use_vllm", action="store_true")
parser.add_argument("--load_in_half", action='store_true')
parser.add_argument("--infer_train_set", action="store_true")
parser.add_argument("--n_subsets", type=int, default=1)
parser.add_argument("--subset_id", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--repeat_id_start", type=int, default=0)
parser.add_argument("--n_repeat_sampling", type=int, default=1)
parser.add_argument("--complete_partial_output", action='store_true')
parser.add_argument("--use_concise_exec_info", action='store_true')
parser.add_argument("--prompt_format", type=str, choices=['sft', 'few_shot'], default='sft')
parser.add_argument("--few_shot_prompt", type=str, default=None)
parser.add_argument("--answer_extraction_fn", type=str, required=True)
parser.add_argument("--no-execution", action='store_true')
parser.add_argument("--eval_fn", type=str, required=True)
parser.add_argument("--gpus", type=str, default=None)
args, unparsed_args = parser.parse_known_args()
if args.gpus is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
print(unparsed_args, flush=True)
model = None
tokenizer = None
pool = None
if args.n_repeat_sampling > 1 or args.repeat_id_start != 0:
assert args.temperature > 0
save_dir = args.save_dir
for i in range(args.repeat_id_start, args.repeat_id_start + args.n_repeat_sampling):
print(f"working on the {i} trials ...", flush=True)
args.save_dir = os.path.join(save_dir, str(i))
os.makedirs(args.save_dir, exist_ok=True)
main(args)
else:
main(args)
if pool is not None:
pool.close()