DeepSeek-Math/evaluation/infer/run_cot_eval.py
2024-02-09 15:23:28 +08:00

235 lines
9.9 KiB
Python
Executable File

import argparse
import os
import sys
import_path = os.path.abspath(__file__)
for _ in range(2):
import_path = os.path.dirname(import_path)
sys.path.append(import_path)
from tqdm import tqdm
import json
from copy import deepcopy
from vllm import LLM, SamplingParams
from pebble import ProcessPool
from concurrent.futures import TimeoutError
import random
from eval.utils import generate_completions, load_hf_lm_and_tokenizer
from transformers import AutoTokenizer
from data_processing.answer_extraction import *
from eval.eval_script import *
from few_shot_prompts import *
def evaluate(eval_fn, tasks, _timeout=15):
with ProcessPool() as pool:
timeout_cnt = 0
iterator = pool.map(eval_fn, tasks, timeout=_timeout).result()
labels = []
while True:
try:
labels.append(int(next(iterator)))
except StopIteration:
break
except TimeoutError as error:
labels.append(0)
timeout_cnt += 1
except Exception as error:
print(error.traceback, flush=True)
exit()
return labels, timeout_cnt
def infer(args, test_data):
global tokenizer
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path, trust_remote_code=True)
if args.prompt_format == 'few_shot':
assert args.few_shot_prompt is not None
prompting = eval(args.few_shot_prompt)()
prompts = []
for example in test_data:
prompt = ""
if args.prompt_format == 'few_shot':
prompt = prompting.format_prompt(example['messages'][-2]['content'], example['messages'][-1]['content'])
else:
for mess in example['messages']:
if args.prompt_format == 'sft':
if mess['role'] == 'user':
prompt += f"{tokenizer.eos_token}User: {mess['content'].strip()}\n\nAssistant:"
elif mess['role'] == 'assistant':
prompt += mess['content'].rstrip()
else:
raise NotImplementedError()
prompt = prompt.lstrip()
if args.prompt_format == 'sft' and prompt.startswith(tokenizer.eos_token):
prompt = prompt[len(tokenizer.eos_token):].lstrip()
example['prompt'] = prompt
prompts.append(prompt.lstrip())
global model
print("Loading model and tokenizer...")
if args.use_vllm:
if model is None:
model = LLM(model=args.model_name_or_path, tokenizer=args.tokenizer_name_or_path, trust_remote_code=True, tensor_parallel_size=len(os.environ['CUDA_VISIBLE_DEVICES'].split(",")))
eos_token = tokenizer.eos_token if tokenizer is not None and tokenizer.eos_token is not None else '</s>'
stop_words = [eos_token]
if args.prompt_format == 'few_shot':
stop_words.extend(prompting.stop_words())
outputs = model.generate(prompts, SamplingParams(temperature=args.temperature, top_p=1.0, max_tokens=1024, n=1, stop=stop_words))
outputs = sorted(outputs, key=lambda x: int(x.request_id)) # sort outputs by request_id
outputs = [output.outputs[0].text for output in outputs]
else:
model, tokenizer = load_hf_lm_and_tokenizer(
model_name_or_path=args.model_name_or_path,
tokenizer_name_or_path=args.tokenizer_name_or_path,
load_in_8bit=args.load_in_8bit,
load_in_half=args.load_in_half,
gptq_model=args.gptq
)
stop_id_sequences = []
if tokenizer.eos_token_id is not None:
stop_id_sequences = [[tokenizer.eos_token_id]]
if args.prompt_format == 'few_shot':
stop_id_sequences.extend([tokenizer.encode(word) for word in prompting.stop_words()])
outputs, finish_completion = generate_completions(
model=model,
tokenizer=tokenizer,
prompts=prompts,
max_new_tokens=512,
batch_size=args.eval_batch_size,
stop_id_sequences=stop_id_sequences if stop_id_sequences else None,
end_of_generation_id_sequence=[tokenizer.eos_token_id] if tokenizer.eos_token_id is not None else None
)
if args.complete_partial_output:
model_outputs = [example['messages'][-1]['content'] + output for example, output in zip(test_data, outputs)]
else:
model_outputs = outputs
predictions = [eval(args.answer_extraction_fn)(item['messages'][-2]['content'], output, task='cot') for item, output in tqdm(zip(test_data, model_outputs), desc="extract answer", total=len(model_outputs))]
assert len(model_outputs) > 0, f"{len(model_outputs)}"
results = []
for example, output, pred in zip(test_data, model_outputs, predictions):
item = deepcopy(example)
item.update({
'model_output': output,
'prediction': pred,
})
results.append(item)
return results
def main(args):
random.seed(42)
print("Loading data...")
test_data = []
with open(os.path.join(args.data_dir, f"train.jsonl" if args.infer_train_set else f"test.jsonl")) as fin:
for line in fin:
example = json.loads(line)
messages = example['messages']
assert messages[-1]['role'] == 'assistant'
if not args.complete_partial_output:
example['reference'] = example.get('reference', '') or [mess['content'] for mess in messages if mess['role'] == 'assistant']
for mess in messages:
if mess['role'] == 'assistant':
mess['content'] = ''
example['messages'] = messages
test_data.append(example)
if args.max_num_examples and len(test_data) > args.max_num_examples:
test_data = random.sample(test_data, args.max_num_examples)
if args.n_subsets > 1:
assert args.subset_id >= 0 and args.subset_id < args.n_subsets
test_data = [item for i, item in enumerate(test_data) if i % args.n_subsets == args.subset_id]
if not test_data:
return
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir, exist_ok=True)
results = infer(args, test_data)
labels, eval_timeout_cnt = evaluate(eval(args.eval_fn), results)
for item, label in zip(results, labels):
item['accuracy'] = label
print("Calculating accuracy...")
acc = 0
for item in results:
acc += item['accuracy']
print("output acc = {:.5f}".format(acc / len(results) * 100), flush=True)
print(f"Timeout count >>> output eval = {eval_timeout_cnt}", flush=True)
pred_fname = "predictions.json"
if args.n_subsets > 1:
pred_fname = f"predictions.{args.subset_id}.json"
with open(os.path.join(args.save_dir, pred_fname), "w") as fout:
json.dump(results, fout, ensure_ascii=True)
metric_fname = "metrics.json"
if args.n_subsets > 1:
metric_fname = f"metrics.{args.subset_id}.json"
with open(os.path.join(args.save_dir, metric_fname), "w") as fout:
json.dump({
"n_samples": len(results),
"accuracy": sum(item['accuracy'] for item in results) / len(results),
}, fout, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data/mgsm")
parser.add_argument("--max_num_examples", type=int, default=None, help="maximum number of examples to evaluate.")
parser.add_argument("--save_dir", type=str, default="results/mgsm")
parser.add_argument("--model_name_or_path", type=str, default=None, help="if specified, we will load the model to generate the predictions.")
parser.add_argument("--tokenizer_name_or_path", type=str, default=None, help="if specified, we will load the tokenizer from here.")
parser.add_argument("--eval_batch_size", type=int, default=1, help="batch size for evaluation.")
parser.add_argument("--load_in_8bit", action="store_true", help="load model in 8bit mode, which will reduce memory and speed up inference.")
parser.add_argument("--gptq", action="store_true", help="If given, we're evaluating a 4-bit quantized GPTQ model.")
parser.add_argument("--use_vllm", action="store_true")
parser.add_argument("--load_in_half", action='store_true')
parser.add_argument("--infer_train_set", action="store_true")
parser.add_argument("--n_subsets", type=int, default=1)
parser.add_argument("--subset_id", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--repeat_id_start", type=int, default=0)
parser.add_argument("--n_repeat_sampling", type=int, default=1)
parser.add_argument("--complete_partial_output", action='store_true')
parser.add_argument("--prompt_format", type=str, choices=['sft', 'few_shot'], default='sft')
parser.add_argument("--few_shot_prompt", type=str, default=None)
parser.add_argument("--answer_extraction_fn", type=str, required=True)
parser.add_argument("--eval_fn", type=str, required=True)
parser.add_argument("--gpus", type=str, default=None)
args, unparsed_args = parser.parse_known_args()
if args.gpus is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
print(unparsed_args, flush=True)
if 'math6' in args.data_dir:
args.multi_turn = True
# model_name_or_path cannot be both None or both not None.
model = None
tokenizer = None
pool = None
if args.n_repeat_sampling > 1 or args.repeat_id_start != 0:
assert args.temperature > 0
save_dir = args.save_dir
for i in range(args.repeat_id_start, args.repeat_id_start + args.n_repeat_sampling):
print(f"working on the {i} trials ...", flush=True)
args.save_dir = os.path.join(save_dir, str(i))
os.makedirs(args.save_dir, exist_ok=True)
main(args)
else:
main(args)
if pool is not None:
pool.close()