DeepSeek-Math/evaluation/infer/run_cot_eval.py

230 lines
9.7 KiB
Python
Raw Normal View History

2024-02-06 02:27:40 +00:00
import argparse
import os
from tqdm import tqdm
import json
from copy import deepcopy
from vllm import LLM, SamplingParams
from pebble import ProcessPool
from concurrent.futures import TimeoutError
import random
from eval.utils import generate_completions, load_hf_lm_and_tokenizer
from transformers import AutoTokenizer
from data_processing.answer_extraction import *
from eval.eval_script import *
from few_shot_prompts import *
def evaluate(eval_fn, tasks, _timeout=15):
with ProcessPool() as pool:
timeout_cnt = 0
iterator = pool.map(eval_fn, tasks, timeout=_timeout).result()
labels = []
while True:
try:
labels.append(int(next(iterator)))
except StopIteration:
break
except TimeoutError as error:
labels.append(0)
timeout_cnt += 1
except Exception as error:
print(error.traceback, flush=True)
exit()
return labels, timeout_cnt
def infer(args, test_data):
global tokenizer
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path, trust_remote_code=True)
if args.prompt_format == 'few_shot':
assert args.few_shot_prompt is not None
prompting = eval(args.few_shot_prompt)()
prompts = []
for example in test_data:
prompt = ""
if args.prompt_format == 'few_shot':
prompt = prompting.format_prompt(example['messages'][-2]['content'], example['messages'][-1]['content'])
else:
for mess in example['messages']:
if args.prompt_format == 'sft':
if mess['role'] == 'user':
prompt += f"{tokenizer.eos_token}User: {mess['content'].strip()}\n\nAssistant:"
elif mess['role'] == 'assistant':
prompt += mess['content'].rstrip()
else:
raise NotImplementedError()
prompt = prompt.lstrip()
if args.prompt_format == 'sft' and prompt.startswith(tokenizer.eos_token):
prompt = prompt[len(tokenizer.eos_token):].lstrip()
example['prompt'] = prompt
prompts.append(prompt.lstrip())
global model
print("Loading model and tokenizer...")
if args.use_vllm:
if model is None:
model = LLM(model=args.model_name_or_path, tokenizer=args.tokenizer_name_or_path, trust_remote_code=True, tensor_parallel_size=len(os.environ['CUDA_VISIBLE_DEVICES'].split(",")))
eos_token = tokenizer.eos_token if tokenizer is not None and tokenizer.eos_token is not None else '</s>'
stop_words = [eos_token]
if args.prompt_format == 'few_shot':
stop_words.extend(prompting.stop_words())
outputs = model.generate(prompts, SamplingParams(temperature=args.temperature, top_p=1.0, max_tokens=1024, n=1, stop=stop_words))
outputs = sorted(outputs, key=lambda x: int(x.request_id)) # sort outputs by request_id
outputs = [output.outputs[0].text for output in outputs]
else:
model, tokenizer = load_hf_lm_and_tokenizer(
model_name_or_path=args.model_name_or_path,
tokenizer_name_or_path=args.tokenizer_name_or_path,
load_in_8bit=args.load_in_8bit,
load_in_half=args.load_in_half,
gptq_model=args.gptq
)
stop_id_sequences = []
if tokenizer.eos_token_id is not None:
stop_id_sequences = [[tokenizer.eos_token_id]]
if args.prompt_format == 'few_shot':
stop_id_sequences.extend([tokenizer.encode(word) for word in prompting.stop_words()])
outputs, finish_completion = generate_completions(
model=model,
tokenizer=tokenizer,
prompts=prompts,
max_new_tokens=512,
batch_size=args.eval_batch_size,
stop_id_sequences=stop_id_sequences if stop_id_sequences else None,
end_of_generation_id_sequence=[tokenizer.eos_token_id] if tokenizer.eos_token_id is not None else None
)
if args.complete_partial_output:
model_outputs = [example['messages'][-1]['content'] + output for example, output in zip(test_data, outputs)]
else:
model_outputs = outputs
predictions = [eval(args.answer_extraction_fn)(item['messages'][-2]['content'], output, task='cot') for item, output in tqdm(zip(test_data, model_outputs), desc="extract answer", total=len(model_outputs))]
assert len(model_outputs) > 0, f"{len(model_outputs)}"
results = []
for example, output, pred in zip(test_data, model_outputs, predictions):
item = deepcopy(example)
item.update({
'model_output': output,
'prediction': pred,
})
results.append(item)
return results
def main(args):
random.seed(42)
print("Loading data...")
test_data = []
with open(os.path.join(args.data_dir, f"train.jsonl" if args.infer_train_set else f"test.jsonl")) as fin:
for line in fin:
example = json.loads(line)
messages = example['messages']
assert messages[-1]['role'] == 'assistant'
if not args.complete_partial_output:
example['reference'] = example.get('reference', '') or [mess['content'] for mess in messages if mess['role'] == 'assistant']
for mess in messages:
if mess['role'] == 'assistant':
mess['content'] = ''
example['messages'] = messages
test_data.append(example)
if args.max_num_examples and len(test_data) > args.max_num_examples:
test_data = random.sample(test_data, args.max_num_examples)
if args.n_subsets > 1:
assert args.subset_id >= 0 and args.subset_id < args.n_subsets
test_data = [item for i, item in enumerate(test_data) if i % args.n_subsets == args.subset_id]
if not test_data:
return
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir, exist_ok=True)
results = infer(args, test_data)
labels, eval_timeout_cnt = evaluate(eval(args.eval_fn), results)
for item, label in zip(results, labels):
item['accuracy'] = label
print("Calculating accuracy...")
acc = 0
for item in results:
acc += item['accuracy']
print("output acc = {:.5f}".format(acc / len(results) * 100), flush=True)
print(f"Timeout count >>> output eval = {eval_timeout_cnt}", flush=True)
pred_fname = "predictions.json"
if args.n_subsets > 1:
pred_fname = f"predictions.{args.subset_id}.json"
with open(os.path.join(args.save_dir, pred_fname), "w") as fout:
json.dump(results, fout, ensure_ascii=True)
metric_fname = "metrics.json"
if args.n_subsets > 1:
metric_fname = f"metrics.{args.subset_id}.json"
with open(os.path.join(args.save_dir, metric_fname), "w") as fout:
json.dump({
"n_samples": len(results),
"accuracy": sum(item['accuracy'] for item in results) / len(results),
}, fout, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data/mgsm")
parser.add_argument("--max_num_examples", type=int, default=None, help="maximum number of examples to evaluate.")
parser.add_argument("--save_dir", type=str, default="results/mgsm")
parser.add_argument("--model_name_or_path", type=str, default=None, help="if specified, we will load the model to generate the predictions.")
parser.add_argument("--tokenizer_name_or_path", type=str, default=None, help="if specified, we will load the tokenizer from here.")
parser.add_argument("--eval_batch_size", type=int, default=1, help="batch size for evaluation.")
parser.add_argument("--load_in_8bit", action="store_true", help="load model in 8bit mode, which will reduce memory and speed up inference.")
parser.add_argument("--gptq", action="store_true", help="If given, we're evaluating a 4-bit quantized GPTQ model.")
parser.add_argument("--use_vllm", action="store_true")
parser.add_argument("--load_in_half", action='store_true')
parser.add_argument("--infer_train_set", action="store_true")
parser.add_argument("--n_subsets", type=int, default=1)
parser.add_argument("--subset_id", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--repeat_id_start", type=int, default=0)
parser.add_argument("--n_repeat_sampling", type=int, default=1)
parser.add_argument("--complete_partial_output", action='store_true')
parser.add_argument("--prompt_format", type=str, choices=['sft', 'few_shot'], default='sft')
parser.add_argument("--few_shot_prompt", type=str, default=None)
parser.add_argument("--answer_extraction_fn", type=str, required=True)
parser.add_argument("--eval_fn", type=str, required=True)
parser.add_argument("--gpus", type=str, default=None)
args, unparsed_args = parser.parse_known_args()
if args.gpus is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
print(unparsed_args, flush=True)
if 'math6' in args.data_dir:
args.multi_turn = True
# model_name_or_path cannot be both None or both not None.
model = None
tokenizer = None
pool = None
if args.n_repeat_sampling > 1 or args.repeat_id_start != 0:
assert args.temperature > 0
save_dir = args.save_dir
for i in range(args.repeat_id_start, args.repeat_id_start + args.n_repeat_sampling):
print(f"working on the {i} trials ...", flush=True)
args.save_dir = os.path.join(save_dir, str(i))
os.makedirs(args.save_dir, exist_ok=True)
main(args)
else:
main(args)
if pool is not None:
pool.close()