mirror of
https://github.com/deepseek-ai/DeepSeek-Coder
synced 2025-01-23 19:07:17 +00:00
180 lines
5.7 KiB
Python
Executable File
180 lines
5.7 KiB
Python
Executable File
"""
|
|
This file come from: https://github.com/microsoft/ToRA/blob/main/src/utils/python_executor.py
|
|
"""
|
|
import io
|
|
import regex
|
|
import pickle
|
|
import traceback
|
|
import copy
|
|
import datetime
|
|
import multiprocessing
|
|
import dateutil.relativedelta
|
|
import multiprocess
|
|
from multiprocess import Pool
|
|
from typing import Any, Dict, Optional
|
|
from pebble import ProcessPool
|
|
from tqdm import tqdm
|
|
from concurrent.futures import TimeoutError
|
|
from functools import partial
|
|
from timeout_decorator import timeout
|
|
from contextlib import redirect_stdout
|
|
|
|
|
|
class GenericRuntime:
|
|
GLOBAL_DICT = {}
|
|
LOCAL_DICT = None
|
|
HEADERS = []
|
|
def __init__(self):
|
|
self._global_vars = copy.copy(self.GLOBAL_DICT)
|
|
self._local_vars = copy.copy(self.LOCAL_DICT) if self.LOCAL_DICT else None
|
|
|
|
for c in self.HEADERS:
|
|
self.exec_code(c)
|
|
|
|
def exec_code(self, code_piece: str) -> None:
|
|
if regex.search(r'(\s|^)?input\(', code_piece) or regex.search(r'(\s|^)?os.system\(', code_piece):
|
|
raise RuntimeError()
|
|
exec(code_piece, self._global_vars)
|
|
|
|
def eval_code(self, expr: str) -> Any:
|
|
return eval(expr, self._global_vars)
|
|
|
|
def inject(self, var_dict: Dict[str, Any]) -> None:
|
|
for k, v in var_dict.items():
|
|
self._global_vars[k] = v
|
|
|
|
@property
|
|
def answer(self):
|
|
return self._global_vars['answer']
|
|
|
|
class DateRuntime(GenericRuntime):
|
|
GLOBAL_DICT = {
|
|
'datetime': datetime.datetime,
|
|
'timedelta': dateutil.relativedelta.relativedelta,
|
|
'relativedelta': dateutil.relativedelta.relativedelta
|
|
}
|
|
|
|
|
|
class CustomDict(dict):
|
|
def __iter__(self):
|
|
return list(super().__iter__()).__iter__()
|
|
|
|
class ColorObjectRuntime(GenericRuntime):
|
|
GLOBAL_DICT = {'dict': CustomDict}
|
|
|
|
|
|
class PythonExecutor:
|
|
def __init__(
|
|
self,
|
|
runtime: Optional[Any] = None,
|
|
get_answer_symbol: Optional[str] = None,
|
|
get_answer_expr: Optional[str] = None,
|
|
get_answer_from_stdout: bool = False,
|
|
timeout_length: int = 5,
|
|
) -> None:
|
|
self.runtime = runtime if runtime else GenericRuntime()
|
|
self.answer_symbol = get_answer_symbol
|
|
self.answer_expr = get_answer_expr
|
|
self.get_answer_from_stdout = get_answer_from_stdout
|
|
self.timeout_length = timeout_length
|
|
|
|
def process_generation_to_code(self, gens: str):
|
|
return [g.split('\n') for g in gens]
|
|
|
|
@staticmethod
|
|
def execute(
|
|
code,
|
|
get_answer_from_stdout = None,
|
|
runtime = None,
|
|
answer_symbol = None,
|
|
answer_expr = None,
|
|
timeout_length = 10,
|
|
):
|
|
try:
|
|
if get_answer_from_stdout:
|
|
program_io = io.StringIO()
|
|
with redirect_stdout(program_io):
|
|
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
|
|
program_io.seek(0)
|
|
result = program_io.readlines()[-1]
|
|
elif answer_symbol:
|
|
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
|
|
result = runtime._global_vars[answer_symbol]
|
|
elif answer_expr:
|
|
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
|
|
result = timeout(timeout_length)(runtime.eval_code)(answer_expr)
|
|
else:
|
|
timeout(timeout_length)(runtime.exec_code)('\n'.join(code[:-1]))
|
|
result = timeout(timeout_length)(runtime.eval_code)(code[-1])
|
|
exec_info = "Done"
|
|
str(result)
|
|
pickle.dumps(result) # serialization check
|
|
except:
|
|
result = ''
|
|
exec_info = traceback.format_exc().split('\n')[-2]
|
|
return result, exec_info
|
|
|
|
def apply(self, code):
|
|
return self.batch_apply([code])[0]
|
|
|
|
def batch_apply(self, batch_code):
|
|
all_code_snippets = self.process_generation_to_code(batch_code)
|
|
|
|
timeout_cnt = 0
|
|
all_exec_results = []
|
|
with ProcessPool(max_workers=min(len(all_code_snippets), multiprocessing.cpu_count())) as pool:
|
|
executor = partial(
|
|
self.execute,
|
|
get_answer_from_stdout=self.get_answer_from_stdout,
|
|
runtime=self.runtime,
|
|
answer_symbol=self.answer_symbol,
|
|
answer_expr=self.answer_expr,
|
|
timeout_length=self.timeout_length, # this timeout not work
|
|
)
|
|
future = pool.map(executor, all_code_snippets, timeout=self.timeout_length)
|
|
iterator = future.result()
|
|
|
|
if len(all_code_snippets) > 100:
|
|
progress_bar = tqdm(total=len(all_code_snippets), desc="Execute")
|
|
else:
|
|
progress_bar = None
|
|
|
|
while True:
|
|
try:
|
|
result = next(iterator)
|
|
all_exec_results.append(result)
|
|
except StopIteration:
|
|
break
|
|
except TimeoutError as error:
|
|
print(error)
|
|
all_exec_results.append(("", "Timeout Error"))
|
|
timeout_cnt += 1
|
|
except Exception as error:
|
|
print(error)
|
|
exit()
|
|
if progress_bar is not None:
|
|
progress_bar.update(1)
|
|
|
|
if progress_bar is not None:
|
|
progress_bar.close()
|
|
|
|
batch_results = []
|
|
for code, (result, exec_info) in zip(all_code_snippets, all_exec_results):
|
|
batch_results.append((result, exec_info))
|
|
return batch_results
|
|
|
|
|
|
def _test():
|
|
batch_code = [
|
|
"""
|
|
print("Hello world!")
|
|
"""
|
|
]
|
|
|
|
executor = PythonExecutor(get_answer_from_stdout=True)
|
|
predictions = executor.apply(batch_code[0])
|
|
print(predictions)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
_test() |