DeepSeek-Coder/Evaluation/HumanEval/utils/dataset.py
2023-11-02 22:07:09 +08:00

62 lines
2.2 KiB
Python

import os
import numpy as np
import json
class HumanEvalDataset:
def __init__(self, root, sample_num=1, language="python", issft=False):
"""
root: the path to the HumanEval dataset
sample_num: the number of samples for each prompt
language: the language of the HumanEval dataset
issft: whether to use the SFT setting
"""
self.root = root
self.data = open(os.path.join(self.root, f"humaneval-{language}.jsonl")).readlines()
tmp = self.get_qa_only_data(self.data, issft)
self.clean_data = []
for i in range(len(tmp)):
for j in range(sample_num):
self.clean_data.append(tmp[i])
self.stopwords = self.clean_data[0]["stopwords"]
np.random.seed(1234)
print(f"Read HumanEval from {root}, number of samples {len(self.clean_data)}")
def get_qa_only_data(self, data_json, sft=False):
"""
data_json: the jsonl file of HumanEval
sft: whether to use the SFT setting
return: a list of dict, each dict contains the prompt, task_id and stopwords
"""
ans = []
for line in data_json:
line = json.loads(line)
prompt = line["prompt"].strip()
if "prefix" in line:
origin_prompt = line["prefix"]
else:
origin_prompt = line["prompt"]
if sft:
prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context.\nWrite a response that appropriately completes the request.\n\n### Instruction:\nWrite a program to perform the given task.\n\nInput:\n{prompt}\n\n### Response:\n"""
if "stop_tokens" in line:
s = line["stop_tokens"]
else:
s = []
ans.append({"prompt":prompt, "task_id":line["task_id"], "original_prompt": origin_prompt, "stopwords":s})
return ans
def __len__(self):
"""
return the number of samples in the dataset
"""
return len(self.clean_data)
def __getitem__(self, index):
"""
return the sample at index
"""
sample = self.clean_data[index]
return sample