mirror of
https://github.com/deepseek-ai/DeepSeek-Coder
synced 2025-01-23 02:47:32 +00:00
297 lines
9.7 KiB
Python
297 lines
9.7 KiB
Python
import os
|
|
import sys
|
|
import fire
|
|
import json
|
|
import gzip
|
|
import regex
|
|
import numpy as np
|
|
import itertools
|
|
|
|
from typing import *
|
|
from tqdm.auto import tqdm
|
|
from collections import defaultdict
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
from .data import stream_jsonl
|
|
from .execution import check_correctness
|
|
IMPORT_HELPER = {
|
|
"python": [
|
|
"import math",
|
|
"import re",
|
|
"import sys",
|
|
"import copy",
|
|
"import datetime",
|
|
"import itertools",
|
|
"import collections",
|
|
"import heapq",
|
|
"import functools",
|
|
"import hashlib",
|
|
"import numpy",
|
|
"import numpy as np",
|
|
"import string",
|
|
"from typing import *",
|
|
"from collections import *",
|
|
],
|
|
"go" : [
|
|
"math",
|
|
"strings",
|
|
"fmt",
|
|
"strconv",
|
|
"time",
|
|
"bytes",
|
|
"regexp",
|
|
"sort",
|
|
"math/rand",
|
|
"crypto/md5",
|
|
],
|
|
"cpp" : [
|
|
"#include<stdlib.h>",
|
|
"#include<algorithm>",
|
|
"#include<math.h>",
|
|
"#include<stdio.h>",
|
|
"#include<vector>",
|
|
"#include<string>",
|
|
"#include<climits>",
|
|
"#include<cstring>",
|
|
"#include<iostream>",
|
|
"#include<cassert>"
|
|
],
|
|
"cs": ["using System.Numerics;", "using System.Diagnostics;", "using System.Collections.Generic;", "using System.Linq;", "using System.Text;", "using System.Security.Cryptography;", "using System.Collections.Generic;"]
|
|
}
|
|
|
|
|
|
LANGUAGE_NAME = {
|
|
"cpp" : "CPP",
|
|
"go" : "Go",
|
|
"java" : "Java",
|
|
"js" : "JavaScript",
|
|
"python": "Python",
|
|
}
|
|
|
|
|
|
def read_dataset(
|
|
data_file: str = None,
|
|
dataset_type: str = "humaneval",
|
|
num_shot=None,
|
|
) -> Dict:
|
|
"""
|
|
Reads a dataset and returns a dictionary of tasks.
|
|
"""
|
|
if num_shot is not None:
|
|
print(f"{num_shot}-shot setting...")
|
|
if "humaneval" in dataset_type.lower():
|
|
if data_file is None:
|
|
current_path = os.path.dirname(os.path.abspath(__file__))
|
|
data_file = os.path.join(current_path, "..", "humaneval-x", "python", "data", "humaneval_python.jsonl.gz")
|
|
dataset = {task["task_id"]: task for task in stream_jsonl(data_file)}
|
|
else:
|
|
raise f"Dataset: {dataset_type} not supported."
|
|
|
|
return dataset
|
|
|
|
def estimate_pass_at_k(
|
|
num_samples: Union[int, List[int], np.ndarray],
|
|
num_correct: Union[List[int], np.ndarray],
|
|
k: int
|
|
) -> np.ndarray:
|
|
"""
|
|
Estimates pass@k of each problem and returns them in an array.
|
|
"""
|
|
|
|
def estimator(n: int, c: int, k: int) -> float:
|
|
"""
|
|
Calculates 1 - comb(n - c, k) / comb(n, k).
|
|
"""
|
|
if n - c < k:
|
|
return 1.0
|
|
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
|
|
|
|
if isinstance(num_samples, int):
|
|
num_samples_it = itertools.repeat(num_samples, len(num_correct))
|
|
else:
|
|
assert len(num_samples) == len(num_correct)
|
|
num_samples_it = iter(num_samples)
|
|
|
|
return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])
|
|
|
|
def process_humaneval_test(sample, problems, example_test=False, is_mbpp=False, language="python"):
|
|
"""
|
|
Processes a sample for evaluation.
|
|
"""
|
|
task_id = sample["task_id"]
|
|
if is_mbpp:
|
|
return sample["generation"] + "\n" + "\n".join(problems[task_id]["test"])
|
|
|
|
prompt = sample["prompt"]
|
|
if example_test and "example_test" in problems[task_id] and problems[task_id]["example_test"] != "":
|
|
test = problems[task_id]["example_test"]
|
|
else:
|
|
test = problems[task_id]["test"]
|
|
code = sample["generation"]
|
|
|
|
# Pre-process for different languages
|
|
if language == "python":
|
|
test_setup = "\n".join(IMPORT_HELPER["python"]) + "\n"
|
|
test_string = test_setup + code + "\n" + test + "\n"
|
|
elif language == "cpp":
|
|
test_set_up = ""
|
|
for s in IMPORT_HELPER["cpp"]:
|
|
if s not in prompt:
|
|
test_set_up += s + "\n"
|
|
test_string = test_set_up + "\n" + code + "\n" + test
|
|
elif language == "java":
|
|
test_string = code + "\n" + test
|
|
elif language == "cs":
|
|
test_set_up = ""
|
|
for s in IMPORT_HELPER["cs"]:
|
|
test_set_up += s + "\n"
|
|
test_string = test_set_up + "\n" + code + "\n" + test
|
|
elif language in ["js", "javascript", "ts", "sh", "go"]:
|
|
test_string = code + "\n" + test
|
|
elif language == "go232":
|
|
import_string = problems[task_id]["import"]
|
|
prompt = prompt.replace(import_string, "")
|
|
if example_test and "example_test" in problems[task_id]:
|
|
test = problems[task_id]["example_test"]
|
|
else:
|
|
test = problems[task_id]["test"]
|
|
test_setup = problems[task_id]["test_setup"]
|
|
other_pkgs = []
|
|
for pkg in IMPORT_HELPER["go"]:
|
|
if pkg not in test_setup:
|
|
p = pkg.split("/")[-1]
|
|
if p + "." in code:
|
|
other_pkgs.append(f"\"{pkg}\"")
|
|
if other_pkgs:
|
|
import_other_pkgs = "import (\n" + " ".join([p + "\n" for p in other_pkgs]) + ")"
|
|
test_string = test_setup + "\n" + import_other_pkgs + "\n" + prompt + code + "\n" + test
|
|
else:
|
|
test_string = test_setup + "\n" + prompt + code + "\n" + test
|
|
elif language == "rust":
|
|
main = "\nfn main(){ \n } \n"
|
|
declaration = problems[task_id]["declaration"]
|
|
test_string = main + declaration + prompt + code + test
|
|
elif language == "php":
|
|
if code[:5] != "<?php":
|
|
code = "<?php\n" + code
|
|
test_string = code + "\n" + test + "?>"
|
|
return test_string
|
|
|
|
|
|
def stream_jsonl_all(filename: str) -> Iterable[Dict]:
|
|
"""
|
|
Streams a JSONL file.
|
|
"""
|
|
results = []
|
|
if filename.endswith(".gz"):
|
|
fp = gzip.open(open(filename, "rb"), "rt")
|
|
else:
|
|
fp = open(filename, "r")
|
|
for line in fp:
|
|
if any(not x.isspace() for x in line):
|
|
results.append(json.loads(line))
|
|
fp.close()
|
|
|
|
return results
|
|
|
|
|
|
def evaluate_functional_correctness(
|
|
input_file: str = None,
|
|
tmp_dir: str = "./",
|
|
n_workers: int = 32,
|
|
timeout: float = 10.0,
|
|
problem_file: str = "../data/humaneval_python.jsonl.gz",
|
|
out_dir: str = None,
|
|
k: List[int] = [1, 10, 100],
|
|
test_groundtruth: bool = False,
|
|
example_test: bool = False,
|
|
is_mbpp: bool = False,
|
|
language: str = "python",
|
|
):
|
|
"""
|
|
Evaluates the functional correctness of a model.
|
|
"""
|
|
if example_test:
|
|
print("Example test...")
|
|
|
|
problems = read_dataset(problem_file,
|
|
dataset_type="humaneval")
|
|
sample_jsonl = stream_jsonl_all(input_file)
|
|
|
|
|
|
with ThreadPoolExecutor(max_workers=n_workers) as executor:
|
|
|
|
futures = []
|
|
completion_id = Counter()
|
|
n_samples = 0
|
|
results = defaultdict(list)
|
|
|
|
if test_groundtruth:
|
|
print("Testing ground truth...")
|
|
for sample in tqdm(problems.values()):
|
|
task_id = sample["task_id"]
|
|
lang = task_id.split("/")[0].lower()
|
|
if lang == "javascript":
|
|
lang = "js"
|
|
tmp_dir_ = os.path.join(tmp_dir, lang, "evaluation")
|
|
sample["generation"] = sample["canonical_solution"]
|
|
sample["test_code"] = process_humaneval_test(sample, problems, example_test, language)
|
|
if sample["test_code"] is None:
|
|
continue
|
|
args = (task_id, sample, lang, timeout, tmp_dir_, completion_id[task_id])
|
|
future = executor.submit(check_correctness, *args)
|
|
futures.append(future)
|
|
completion_id[task_id] += 1
|
|
n_samples += 1
|
|
else:
|
|
print("Reading samples...")
|
|
for sample in tqdm(sample_jsonl):
|
|
task_id = sample["task_id"]
|
|
if not is_mbpp:
|
|
lang = language
|
|
if not is_mbpp and lang == "javascript":
|
|
lang = "js"
|
|
if is_mbpp:
|
|
lang = "python"
|
|
tmp_dir_ = os.path.join(tmp_dir, lang, "evaluation")
|
|
sample["task_id"] = task_id
|
|
sample["test_code"] = process_humaneval_test(sample, problems, example_test, is_mbpp, language)
|
|
if sample["test_code"] is None:
|
|
continue
|
|
if "completion_id" in sample:
|
|
completion_id_ = sample["completion_id"]
|
|
else:
|
|
completion_id_ = completion_id[task_id]
|
|
args = (task_id, sample, lang, timeout, tmp_dir_, completion_id_)
|
|
future = executor.submit(check_correctness, *args)
|
|
futures.append(future)
|
|
completion_id[task_id] += 1
|
|
n_samples += 1
|
|
|
|
if len(completion_id) == len(problems):
|
|
evaluate_pass_at_k = True
|
|
else:
|
|
evaluate_pass_at_k = False
|
|
|
|
print("Running test suites...")
|
|
for future in tqdm(as_completed(futures), total=len(futures)):
|
|
result = future.result()
|
|
results[result["task_id"]].append((result["completion_id"], result))
|
|
|
|
# Calculate pass@k.
|
|
total, correct = [], []
|
|
for result in results.values():
|
|
passed = [r[1]["passed"] for r in result]
|
|
total.append(len(passed))
|
|
correct.append(sum(passed))
|
|
total = np.array(total)
|
|
correct = np.array(correct)
|
|
if evaluate_pass_at_k:
|
|
ks = k
|
|
pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean()
|
|
for k in ks if (total >= k).all()}
|
|
print(pass_at_k)
|
|
else:
|
|
print("Total:", np.sum(total))
|
|
print("Correct:", np.sum(correct))
|
|
return pass_at_k
|