DeepSeek-Coder/19_ClusterringUsingIncomeSpent.ipynb
2025-02-25 06:26:48 -08:00

814 lines
114 KiB
Plaintext

{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/Orrm23/DeepSeek-Coder/blob/main/19_ClusterringUsingIncomeSpent.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "r3cas2_1T98w"
},
"source": [
"#19 Clusterring Using Income Spent"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IODliia6U1xO"
},
"source": [
"## Importing the basic libraries"
]
},
{
"cell_type": "code",
"metadata": {
"id": "y98nA5UdU6Hf"
},
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
],
"execution_count": 1,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "2hRC6YEod9_8"
},
"source": [
"### Load Dataset from Local Directory"
]
},
{
"cell_type": "code",
"metadata": {
"id": "tZBTr4JHeAzb",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 73
},
"outputId": "c555accb-3850-4138-88b9-f770a9cfc1e7"
},
"source": [
"from google.colab import files\n",
"uploaded = files.upload()"
],
"execution_count": 2,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"\n",
" <input type=\"file\" id=\"files-04404a82-185d-4422-aa90-24e370a1e74a\" name=\"files[]\" multiple disabled\n",
" style=\"border:none\" />\n",
" <output id=\"result-04404a82-185d-4422-aa90-24e370a1e74a\">\n",
" Upload widget is only available when the cell has been executed in the\n",
" current browser session. Please rerun this cell to enable.\n",
" </output>\n",
" <script>// Copyright 2017 Google LLC\n",
"//\n",
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"// you may not use this file except in compliance with the License.\n",
"// You may obtain a copy of the License at\n",
"//\n",
"// http://www.apache.org/licenses/LICENSE-2.0\n",
"//\n",
"// Unless required by applicable law or agreed to in writing, software\n",
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"// See the License for the specific language governing permissions and\n",
"// limitations under the License.\n",
"\n",
"/**\n",
" * @fileoverview Helpers for google.colab Python module.\n",
" */\n",
"(function(scope) {\n",
"function span(text, styleAttributes = {}) {\n",
" const element = document.createElement('span');\n",
" element.textContent = text;\n",
" for (const key of Object.keys(styleAttributes)) {\n",
" element.style[key] = styleAttributes[key];\n",
" }\n",
" return element;\n",
"}\n",
"\n",
"// Max number of bytes which will be uploaded at a time.\n",
"const MAX_PAYLOAD_SIZE = 100 * 1024;\n",
"\n",
"function _uploadFiles(inputId, outputId) {\n",
" const steps = uploadFilesStep(inputId, outputId);\n",
" const outputElement = document.getElementById(outputId);\n",
" // Cache steps on the outputElement to make it available for the next call\n",
" // to uploadFilesContinue from Python.\n",
" outputElement.steps = steps;\n",
"\n",
" return _uploadFilesContinue(outputId);\n",
"}\n",
"\n",
"// This is roughly an async generator (not supported in the browser yet),\n",
"// where there are multiple asynchronous steps and the Python side is going\n",
"// to poll for completion of each step.\n",
"// This uses a Promise to block the python side on completion of each step,\n",
"// then passes the result of the previous step as the input to the next step.\n",
"function _uploadFilesContinue(outputId) {\n",
" const outputElement = document.getElementById(outputId);\n",
" const steps = outputElement.steps;\n",
"\n",
" const next = steps.next(outputElement.lastPromiseValue);\n",
" return Promise.resolve(next.value.promise).then((value) => {\n",
" // Cache the last promise value to make it available to the next\n",
" // step of the generator.\n",
" outputElement.lastPromiseValue = value;\n",
" return next.value.response;\n",
" });\n",
"}\n",
"\n",
"/**\n",
" * Generator function which is called between each async step of the upload\n",
" * process.\n",
" * @param {string} inputId Element ID of the input file picker element.\n",
" * @param {string} outputId Element ID of the output display.\n",
" * @return {!Iterable<!Object>} Iterable of next steps.\n",
" */\n",
"function* uploadFilesStep(inputId, outputId) {\n",
" const inputElement = document.getElementById(inputId);\n",
" inputElement.disabled = false;\n",
"\n",
" const outputElement = document.getElementById(outputId);\n",
" outputElement.innerHTML = '';\n",
"\n",
" const pickedPromise = new Promise((resolve) => {\n",
" inputElement.addEventListener('change', (e) => {\n",
" resolve(e.target.files);\n",
" });\n",
" });\n",
"\n",
" const cancel = document.createElement('button');\n",
" inputElement.parentElement.appendChild(cancel);\n",
" cancel.textContent = 'Cancel upload';\n",
" const cancelPromise = new Promise((resolve) => {\n",
" cancel.onclick = () => {\n",
" resolve(null);\n",
" };\n",
" });\n",
"\n",
" // Wait for the user to pick the files.\n",
" const files = yield {\n",
" promise: Promise.race([pickedPromise, cancelPromise]),\n",
" response: {\n",
" action: 'starting',\n",
" }\n",
" };\n",
"\n",
" cancel.remove();\n",
"\n",
" // Disable the input element since further picks are not allowed.\n",
" inputElement.disabled = true;\n",
"\n",
" if (!files) {\n",
" return {\n",
" response: {\n",
" action: 'complete',\n",
" }\n",
" };\n",
" }\n",
"\n",
" for (const file of files) {\n",
" const li = document.createElement('li');\n",
" li.append(span(file.name, {fontWeight: 'bold'}));\n",
" li.append(span(\n",
" `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n",
" `last modified: ${\n",
" file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n",
" 'n/a'} - `));\n",
" const percent = span('0% done');\n",
" li.appendChild(percent);\n",
"\n",
" outputElement.appendChild(li);\n",
"\n",
" const fileDataPromise = new Promise((resolve) => {\n",
" const reader = new FileReader();\n",
" reader.onload = (e) => {\n",
" resolve(e.target.result);\n",
" };\n",
" reader.readAsArrayBuffer(file);\n",
" });\n",
" // Wait for the data to be ready.\n",
" let fileData = yield {\n",
" promise: fileDataPromise,\n",
" response: {\n",
" action: 'continue',\n",
" }\n",
" };\n",
"\n",
" // Use a chunked sending to avoid message size limits. See b/62115660.\n",
" let position = 0;\n",
" do {\n",
" const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n",
" const chunk = new Uint8Array(fileData, position, length);\n",
" position += length;\n",
"\n",
" const base64 = btoa(String.fromCharCode.apply(null, chunk));\n",
" yield {\n",
" response: {\n",
" action: 'append',\n",
" file: file.name,\n",
" data: base64,\n",
" },\n",
" };\n",
"\n",
" let percentDone = fileData.byteLength === 0 ?\n",
" 100 :\n",
" Math.round((position / fileData.byteLength) * 100);\n",
" percent.textContent = `${percentDone}% done`;\n",
"\n",
" } while (position < fileData.byteLength);\n",
" }\n",
"\n",
" // All done.\n",
" yield {\n",
" response: {\n",
" action: 'complete',\n",
" }\n",
" };\n",
"}\n",
"\n",
"scope.google = scope.google || {};\n",
"scope.google.colab = scope.google.colab || {};\n",
"scope.google.colab._files = {\n",
" _uploadFiles,\n",
" _uploadFilesContinue,\n",
"};\n",
"})(self);\n",
"</script> "
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Saving dataset.csv to dataset.csv\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jpjZ43YlU8eI"
},
"source": [
"## Importing the dataset"
]
},
{
"cell_type": "code",
"metadata": {
"id": "pLVaXoYVU_Uy"
},
"source": [
"dataset = pd.read_csv('dataset.csv')"
],
"execution_count": 3,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "INGdqI-BQpbL"
},
"source": [
"### Summarize Dataset"
]
},
{
"cell_type": "code",
"metadata": {
"id": "q4vNcNRIQtjr",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "a94606a7-9b1e-48a5-ca40-662efa1f8d58"
},
"source": [
"print(dataset.shape)\n",
"print(dataset.describe())\n",
"print(dataset.head(5))"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"(303, 2)\n",
" INCOME SPEND\n",
"count 303.000000 303.000000\n",
"mean 245.273927 149.646865\n",
"std 48.499412 22.905161\n",
"min 126.000000 71.000000\n",
"25% 211.000000 133.500000\n",
"50% 240.000000 153.000000\n",
"75% 274.000000 166.000000\n",
"max 417.000000 202.000000\n",
" INCOME SPEND\n",
"0 233 150\n",
"1 250 187\n",
"2 204 172\n",
"3 236 178\n",
"4 354 163\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zoIEOorVTzD9"
},
"source": [
"### Segregate & Zipping Dataset"
]
},
{
"cell_type": "code",
"metadata": {
"id": "wOuthXLlT0GI",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "fc5c0fe3-9a05-4c9a-9a5d-197e213866fc"
},
"source": [
"Income = dataset['INCOME'].values\n",
"Spend = dataset['SPEND'].values\n",
"X = np.array(list(zip(Income, Spend)))\n",
"X"
],
"execution_count": 5,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[233, 150],\n",
" [250, 187],\n",
" [204, 172],\n",
" [236, 178],\n",
" [354, 163],\n",
" [192, 148],\n",
" [294, 153],\n",
" [263, 173],\n",
" [199, 162],\n",
" [168, 174],\n",
" [239, 160],\n",
" [275, 139],\n",
" [266, 171],\n",
" [211, 144],\n",
" [283, 162],\n",
" [219, 158],\n",
" [340, 172],\n",
" [226, 114],\n",
" [247, 171],\n",
" [239, 151],\n",
" [234, 161],\n",
" [233, 179],\n",
" [226, 178],\n",
" [243, 137],\n",
" [199, 178],\n",
" [302, 162],\n",
" [212, 157],\n",
" [175, 123],\n",
" [417, 157],\n",
" [197, 152],\n",
" [198, 168],\n",
" [177, 140],\n",
" [219, 188],\n",
" [273, 152],\n",
" [213, 125],\n",
" [177, 160],\n",
" [304, 170],\n",
" [232, 165],\n",
" [269, 148],\n",
" [360, 151],\n",
" [308, 142],\n",
" [245, 180],\n",
" [208, 148],\n",
" [264, 143],\n",
" [321, 182],\n",
" [325, 172],\n",
" [235, 180],\n",
" [257, 156],\n",
" [216, 115],\n",
" [234, 160],\n",
" [256, 149],\n",
" [302, 151],\n",
" [231, 146],\n",
" [141, 175],\n",
" [252, 172],\n",
" [201, 158],\n",
" [222, 186],\n",
" [260, 185],\n",
" [182, 174],\n",
" [303, 159],\n",
" [265, 130],\n",
" [309, 156],\n",
" [186, 190],\n",
" [203, 132],\n",
" [211, 165],\n",
" [183, 182],\n",
" [222, 143],\n",
" [234, 175],\n",
" [220, 170],\n",
" [209, 163],\n",
" [258, 147],\n",
" [227, 154],\n",
" [204, 202],\n",
" [261, 186],\n",
" [213, 165],\n",
" [250, 161],\n",
" [245, 166],\n",
" [221, 164],\n",
" [205, 184],\n",
" [240, 154],\n",
" [250, 179],\n",
" [308, 170],\n",
" [318, 160],\n",
" [298, 178],\n",
" [265, 122],\n",
" [264, 160],\n",
" [277, 151],\n",
" [197, 156],\n",
" [214, 158],\n",
" [248, 122],\n",
" [255, 175],\n",
" [207, 168],\n",
" [223, 169],\n",
" [288, 159],\n",
" [160, 138],\n",
" [226, 111],\n",
" [394, 157],\n",
" [233, 147],\n",
" [315, 162],\n",
" [246, 173],\n",
" [244, 178],\n",
" [270, 145],\n",
" [195, 179],\n",
" [240, 194],\n",
" [196, 163],\n",
" [211, 115],\n",
" [234, 131],\n",
" [236, 152],\n",
" [244, 162],\n",
" [254, 159],\n",
" [325, 154],\n",
" [126, 173],\n",
" [313, 133],\n",
" [211, 161],\n",
" [262, 155],\n",
" [215, 170],\n",
" [214, 168],\n",
" [193, 162],\n",
" [204, 172],\n",
" [243, 152],\n",
" [303, 122],\n",
" [271, 182],\n",
" [268, 172],\n",
" [267, 167],\n",
" [199, 179],\n",
" [210, 192],\n",
" [204, 143],\n",
" [277, 172],\n",
" [196, 169],\n",
" [269, 121],\n",
" [201, 163],\n",
" [271, 162],\n",
" [295, 162],\n",
" [235, 153],\n",
" [306, 163],\n",
" [269, 163],\n",
" [178, 96],\n",
" [208, 140],\n",
" [201, 126],\n",
" [263, 105],\n",
" [295, 157],\n",
" [303, 181],\n",
" [209, 173],\n",
" [223, 142],\n",
" [197, 116],\n",
" [245, 143],\n",
" [242, 149],\n",
" [240, 171],\n",
" [226, 169],\n",
" [180, 150],\n",
" [228, 138],\n",
" [149, 125],\n",
" [227, 155],\n",
" [278, 152],\n",
" [220, 152],\n",
" [197, 131],\n",
" [253, 179],\n",
" [192, 174],\n",
" [220, 144],\n",
" [221, 163],\n",
" [240, 169],\n",
" [342, 166],\n",
" [157, 182],\n",
" [175, 173],\n",
" [175, 173],\n",
" [286, 108],\n",
" [229, 129],\n",
" [268, 160],\n",
" [254, 147],\n",
" [203, 155],\n",
" [256, 142],\n",
" [229, 168],\n",
" [284, 160],\n",
" [224, 173],\n",
" [206, 132],\n",
" [167, 114],\n",
" [230, 160],\n",
" [335, 158],\n",
" [177, 120],\n",
" [276, 112],\n",
" [353, 132],\n",
" [225, 114],\n",
" [330, 169],\n",
" [230, 165],\n",
" [243, 128],\n",
" [290, 153],\n",
" [253, 144],\n",
" [266, 109],\n",
" [233, 163],\n",
" [172, 158],\n",
" [305, 142],\n",
" [216, 131],\n",
" [188, 113],\n",
" [282, 142],\n",
" [185, 155],\n",
" [326, 140],\n",
" [231, 147],\n",
" [254, 163],\n",
" [267, 99],\n",
" [248, 158],\n",
" [197, 177],\n",
" [258, 141],\n",
" [270, 111],\n",
" [274, 150],\n",
" [164, 145],\n",
" [255, 161],\n",
" [239, 142],\n",
" [258, 157],\n",
" [188, 139],\n",
" [177, 162],\n",
" [229, 150],\n",
" [260, 140],\n",
" [219, 140],\n",
" [307, 146],\n",
" [249, 144],\n",
" [341, 136],\n",
" [263, 97],\n",
" [330, 132],\n",
" [254, 127],\n",
" [256, 150],\n",
" [407, 154],\n",
" [217, 111],\n",
" [282, 174],\n",
" [288, 133],\n",
" [239, 126],\n",
" [174, 125],\n",
" [281, 103],\n",
" [198, 130],\n",
" [288, 159],\n",
" [309, 131],\n",
" [243, 152],\n",
" [289, 124],\n",
" [289, 145],\n",
" [246, 96],\n",
" [322, 109],\n",
" [299, 173],\n",
" [300, 171],\n",
" [293, 170],\n",
" [304, 162],\n",
" [282, 156],\n",
" [269, 112],\n",
" [249, 143],\n",
" [212, 132],\n",
" [274, 88],\n",
" [184, 105],\n",
" [274, 166],\n",
" [409, 150],\n",
" [246, 120],\n",
" [283, 195],\n",
" [254, 146],\n",
" [298, 122],\n",
" [247, 143],\n",
" [294, 106],\n",
" [299, 125],\n",
" [273, 125],\n",
" [309, 147],\n",
" [259, 130],\n",
" [200, 126],\n",
" [244, 154],\n",
" [231, 182],\n",
" [228, 165],\n",
" [230, 160],\n",
" [282, 95],\n",
" [269, 169],\n",
" [206, 108],\n",
" [212, 132],\n",
" [327, 117],\n",
" [149, 126],\n",
" [286, 116],\n",
" [283, 103],\n",
" [249, 144],\n",
" [234, 145],\n",
" [237, 71],\n",
" [234, 156],\n",
" [275, 118],\n",
" [212, 168],\n",
" [218, 105],\n",
" [261, 141],\n",
" [319, 152],\n",
" [166, 125],\n",
" [315, 125],\n",
" [204, 156],\n",
" [218, 134],\n",
" [223, 181],\n",
" [207, 138],\n",
" [311, 120],\n",
" [204, 162],\n",
" [232, 164],\n",
" [335, 143],\n",
" [205, 130],\n",
" [203, 161],\n",
" [318, 140],\n",
" [225, 146],\n",
" [212, 150],\n",
" [169, 144],\n",
" [187, 144],\n",
" [197, 136],\n",
" [176, 90],\n",
" [241, 123],\n",
" [264, 132],\n",
" [193, 141],\n",
" [131, 115],\n",
" [236, 174]])"
]
},
"metadata": {},
"execution_count": 5
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uz5ynI4FR734"
},
"source": [
"### Finding the Optimized K Value"
]
},
{
"cell_type": "code",
"metadata": {
"id": "2PuOMjABSCXw",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 472
},
"outputId": "824965c1-908e-40cb-f7f5-7b03e4ac6bbd"
},
"source": [
"from sklearn.cluster import KMeans\n",
"wcss = []\n",
"for i in range(1,11):\n",
" km=KMeans(n_clusters=i, random_state=0)\n",
" km.fit(X)\n",
" wcss.append(km.inertia_)\n",
"plt.plot(range(1,11),wcss,color=\"red\", marker =\"8\")\n",
"plt.title('Optimal K Value')\n",
"plt.xlabel('Number of clusters')\n",
"plt.ylabel('WCSS')\n",
"plt.show()"
],
"execution_count": 6,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHHCAYAAACWQK1nAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZBRJREFUeJzt3XlcVPXeB/DPsMwA4gAugCgg7qm4YRLuJlcyWjRzi8y2q96wq2lW1FVLb+HSbmbZ7Yq3XNKeq20ueVFcEZVERNAscSkFV2ZcEIH5Pn+cODKCMubAAebzfr3Oy5lzvnPOF3ie5nPP+Z3f0YmIgIiIiIjuiJPWDRARERHVBgxVRERERHbAUEVERERkBwxVRERERHbAUEVERERkBwxVRERERHbAUEVERERkBwxVRERERHbAUEVERERkBwxVRFSjJSQkQKfT4ejRow517Dtx9OhR6HQ6JCQkaN0KUa3CUEVEdnXgwAE8/vjjaNy4MQwGAwICAhATE4MDBw7c0X7feustrF692j5NVrHXX38dOp0OZ8+etVp/4sQJNG/eHPXq1cNPP/1U7mcfeugheHh44OLFizfdf0xMDPR6Pc6dO2fXvono9jBUEZHd/Pe//0WXLl2QmJiIp556Ch9//DGeeeYZbNq0CV26dMGqVav+9L5vFqpGjRqF/Px8BAcH30HnVe/3339Hv379cP78eWzYsAFdunQpty4mJgb5+fk3/d1duXIF33zzDe677z7Ur1+/Mlsmogq4aN0AEdUOv/76K0aNGoVmzZphy5YtaNiwobptwoQJ6NWrF0aNGoX09HQ0a9bMbsd1dnaGs7Oz3fZXFU6ePIl+/frh3Llz2LBhA8LCwm5a+9BDD6Fu3bpYunQpnnjiiTLbv/nmG1y+fBkxMTGV2TIR2YBnqojILubOnYsrV65g4cKFVoEKABo0aIBPP/0Uly9fxpw5c9T1JZfFDh48iGHDhsFoNKJ+/fqYMGECrl69qtbpdDpcvnwZixcvhk6ng06nw5NPPgmg/HFNTZs2xQMPPICkpCR07doV7u7uCA0NRVJSEgDljFpoaCjc3NwQFhaGvXv3WvWbnp6OJ598Es2aNYObmxv8/f3x9NNP2+Xy2qlTp9CvXz+cPn0aP/74I7p27XrLend3dzzyyCNITEzE6dOny2xfunQp6tati4ceegjnz5/Hiy++iNDQUHh6esJoNGLgwIHYt29fhX317dsXffv2LbP+ySefRNOmTa3WWSwWvP/++2jXrh3c3Nzg5+eHsWPH4sKFCxUeh6g2Y6giIrv47rvv0LRpU/Tq1avc7b1790bTpk3xww8/lNk2bNgwXL16FfHx8bj//vvx4YcfYsyYMer2L774AgaDAb169cIXX3yBL774AmPHjr1lP7/88gsee+wxPPjgg4iPj8eFCxfw4IMPYsmSJXjhhRfw+OOP44033sCvv/6KYcOGwWKxqJ/dsGEDjhw5gqeeegrz5s3DiBEjsHz5ctx///0QkT/5GwJyc3Nx7733IicnB+vXr8fdd99t0+diYmJQVFSEFStWWK0/f/481q9fj8GDB8Pd3R1HjhzB6tWr8cADD+Ddd9/FlClTsH//fvTp0wcnT578033faOzYsZgyZQp69OiBDz74AE899RSWLFmCqKgoFBYW2u04RDWOEBHdoby8PAEgDz/88C3rHnroIQEgZrNZRESmT58uAOShhx6yqnvuuecEgOzbt09dV6dOHRk9enSZfS5atEgASHZ2trouODhYAMiOHTvUdevXrxcA4u7uLseOHVPXf/rppwJANm3apK67cuVKmeMsW7ZMAMiWLVtueezylPycwcHBYjQaJTk5+Zb1NyoqKpJGjRpJRESE1fpPPvlEAMj69etFROTq1atSXFxsVZOdnS0Gg0FmzJhhtQ6ALFq0SF3Xp08f6dOnT5ljjx49WoKDg9X3W7duFQCyZMkSq7p169aVu57IkfBMFRHdsZI70+rWrXvLupLtZrPZan1sbKzV++effx4AsGbNmj/dU9u2bREREaG+Dw8PBwDce++9CAoKKrP+yJEj6jp3d3f19dWrV3H27Fncc889AHDTu/RskZubC09PTzRq1Oi2Pufs7IwRI0YgOTnZ6jLn0qVL4efnh/79+wMADAYDnJyU/6wXFxfj3Llz8PT0ROvWre+o79JWrlwJLy8v/OUvf8HZs2fVJSwsDJ6enti0aZNdjkNUEzFUEdEdKwlLt7rtv/T2G8NXy5Ytrd43b94cTk5OdzT/U+ngBABeXl4AgMDAwHLXlx4PdP78eUyYMAF+fn5wd3dHw4YNERISAgAwmUx/uqcvv/wS58+fx1/+8pdyx0fdSslA9KVLlwIAfvvtN2zduhUjRoxQB+pbLBa89957aNmyJQwGAxo0aICGDRsiPT39jvou7fDhwzCZTPD19UXDhg2tlkuXLt32z0VUm/DuPyK6Y15eXmjUqBHS09NvWZeeno7GjRvDaDTesk6n091xTze7I/Bm66XUWKlhw4Zhx44dmDJlCjp16gRPT09YLBbcd999VmOvblefPn2wYsUKPPLII4iKikJSUpIa6ioSFhaGNm3aYNmyZXj11VexbNkyiIjVXX9vvfUWpk6diqeffhozZ85EvXr14OTkhIkTJ1bYt06nK3e8WHFxsdV7i8UCX19fLFmypNz93HiTApEjYagiIrt44IEH8Nlnn2Hbtm3o2bNnme1bt27F0aNHyx1gfvjwYfVMEKAMMrdYLFZ3ndkjaNniwoULSExMxBtvvIFp06ZZ9WgPDz74IP79739j9OjReOCBB/Djjz9aXW68lZiYGEydOhXp6elYunQpWrZsaTXY/euvv0a/fv3w+eefW30uLy8PDRo0uOW+fXx8rC6Bljh27JjV++bNm+N///sfevToYXPfRI6Cl/+IyC6mTJkCd3d3jB07tszUA+fPn8e4cePg4eGBKVOmlPns/Pnzrd7PmzcPADBw4EB1XZ06dZCXl2f/xm9QcibrxrM277//vt2OMWrUKLz//vvYtm0bhgwZYvMdcyVnpaZNm4a0tLQyc1M5OzuX6XvlypX4/fffK9x38+bNcfDgQZw5c0Zdt2/fPmzfvt2qbtiwYSguLsbMmTPL7KOoqKhK/kZE1RXPVBGRXbRs2RKLFy9GTEwMQkND8cwzzyAkJARHjx7F559/jrNnz2LZsmVo3rx5mc9mZ2fjoYcewn333Yfk5GR8+eWXeOyxx9CxY0e1JiwsDP/73//w7rvvIiAgACEhIeogc3syGo3o3bs35syZg8LCQjRu3Bg//vgjsrOz7Xqcv//97zh//jzeeOMNPPHEE1iyZIk6yPxmQkJC0L17d3zzzTcAUCZUPfDAA5gxYwaeeuopdO/eHfv378eSJUtsmmz16aefxrvvvouoqCg888wzOH36ND755BO0a9fO6saCPn36YOzYsYiPj0daWhoGDBgAV1dXHD58GCtXrsQHH3yARx999E/8RohqAU3vPSSiWic9PV1GjhwpjRo1EldXV/H395eRI0fK/v37y9SWTDWQmZkpjz76qNStW1d8fHxk/Pjxkp+fb1V78OBB6d27t7i7uwsAdXqFm02pEB0dXeZ4ACQ2NtZqXcn0AnPnzlXX/fbbbzJ48GDx9vYWLy8vGTp0qJw8eVIAyPTp09W6251S4cyZM2W2Pf/88wJAxo0bd8t9lJg/f74AkG7dupXZdvXqVZk8ebI0atRI3N3dpUePHpKcnFxmuoTyplQQEfnyyy+lWbNmotfrpVOnTrJ+/foyUyqUWLhwoYSFhYm7u7vUrVtXQkND5aWXXpKTJ0/a9HMQ1UY6kTuYyY6I6A68/vrreOONN3DmzJkKx/wQEVV3HFNFREREZAcMVURERER2wFBFREREZAccU0VERERkBzxTRURERGQHDFVEREREdqDp5J8XL17E1KlTsWrVKpw+fRqdO3fGBx98oD52QUQwffp0fPbZZ8jLy0OPHj2wYMECq4evnj9/Hs8//zy+++47ODk5YciQIfjggw/g6emp1qSnpyM2Nha7d+9Gw4YN8fzzz+Oll16y6mXlypWYOnUqjh49ipYtW2L27Nm4//771e229FIRi8WCkydPom7dulX2yA0iIiK6MyKCixcvIiAg4NaT9Go4R5YMGzZM2rZtK5s3b5bDhw/L9OnTxWg0ym+//SYiIrNmzRIvLy9ZvXq17Nu3Tx566CEJCQmxmhTwvvvuk44dO8rOnTtl69at0qJFCxk5cqS63WQyiZ+fn8TExEhGRoYsW7ZM3N3d5dNPP1Vrtm/fLs7OzjJnzhzJzMyUf/zjH+Lq6mo1WaEtvVTkxIkTAoALFy5cuHDhUgOXEydO3PJ7XrOB6vn5+ahbty6++eYbREdHq+vDwsIwcOBAzJw5EwEBAZg8eTJefPFFAIDJZIKfnx8SEhIwYsQIZGVloW3btti9eze6du0KAFi3bh3uv/9+/PbbbwgICMCCBQvw2muvIScnB3q9HgDwyiuvYPXq1Th48CAAYPjw4bh8+TK+//57tY977rkHnTp1wieffAIRqbAXW5hMJnh7e+PEiRMwGo13/kskIiKiSmc2mxEYGIi8vDx4eXndtE6zy39FRUUoLi6Gm5ub1Xp3d3ds27YN2dnZyMnJQWRkpLrNy8sL4eHhSE5OxogRI5CcnAxvb281UAFAZGQknJyckJKSgsGDByM5ORm9e/dWAxUAREVFYfbs2bhw4QJ8fHyQnJyMSZMmWfURFRWF1atXA4BNvZSnoKAABQUF6vuLFy8CUJ4txlBFRERUs1Q0dEezgep169ZFREQEZs6ciZMnT6K4uBhffvklkpOTcerUKeTk5AAA/Pz8rD7n5+enbsvJyYGvr6/VdhcXF9SrV8+qprx9lGy7VU3p7RX1Up74+Hh4eXmpS2BgYAW/FSIiIqqpNL3774svvoCIoHHjxjAYDPjwww8xcuTICp/UXlPExcXBZDKpy4kTJ7RuiYiIiCqJpumlefPm2Lx5My5duoQTJ05g165dKCwsRLNmzeDv7w8AyM3NtfpMbm6uus3f3x+nT5+22l5UVITz589b1ZS3j5Jtt6opvb2iXspjMBjUS3285EdERFS7VYtTQnXq1EGjRo1w4cIFrF+/Hg8//DBCQkLg7++PxMREtc5sNiMlJQUREREAgIiICOTl5SE1NVWt2bhxIywWC8LDw9WaLVu2oLCwUK3ZsGEDWrduDR8fH7Wm9HFKakqOY0svRERE5OBsng+gEqxbt07Wrl0rR44ckR9//FE6duwo4eHhcu3aNRFRpjHw9vaWb775RtLT0+Xhhx8ud0qFzp07S0pKimzbtk1atmxpNaVCXl6e+Pn5yahRoyQjI0OWL18uHh4eZaZUcHFxkbfffluysrJk+vTp5U6pUFEvFTGZTAJATCbTnfzaiIiIqArZ+v2taaj66quvpFmzZqLX68Xf319iY2MlLy9P3W6xWGTq1Kni5+cnBoNB+vfvL4cOHbLax7lz52TkyJHi6ekpRqNRnnrqKbl48aJVzb59+6Rnz55iMBikcePGMmvWrDK9rFixQlq1aiV6vV7atWsnP/zwg9V2W3qpCEMVERFRzWPr9zcfqFyFzGYzvLy8YDKZOL6KiIiohrD1+7tajKkiIiIiqukYqoiIiIjsQNMHKpMd7N8PlLqzEa6uQGiodv0QERE5KJ6pqslmzgQ6dADCwq4vHToo64mIiKhKMVTVVDNnAtOmlb9t2jQGKyIioirGUFUT7d9/80BVYto0pY6IiIiqBENVTVR6DJU96oiIiOiOMVQRERER2QFDFREREZEdMFTVRK6u9q0jIiKiO8ZQVROFhgIzZty6ZsYMzldFRERUhRiqaqqpU28erGbMULYTERFRleEDlatQpTxQuWRG9aws4PHHgTp1gLw8wIWT5RMREdkDH6jsKEJDgS5dgBEjAG9v4PJl4KeftO6KiIjI4TBU1RbOzkCfPsrrTZu07YWIiMgBMVTVJvfeq/y7caO2fRARETkghqrapCRUbdsGXLumbS9EREQOhqGqNmnXDmjYELhyBdi1S+tuiIiIHApDVW2i0wH9+imveQmQiIioSjFU1TYMVURERJpgqKptSsZVJScD+fna9kJERORAGKpqm5YtgcaNlYHqO3Zo3Q0REZHDYKiqbTiuioiISBMMVbVRySVATgJKRERUZRiqaqOSULVrF3Dxora9EBEROQiGqtooOBgICQGKi4GtW7XuhoiIyCEwVNVWvARIRERUpRiqais+B5CIiKhKMVTVViV3AO7dC5w/r20vREREDoChqrZq1Aho0wYQAbZs0bobIiKiWo+hqjbjJUAiIqIqw1BVm3ESUCIioiqjaagqLi7G1KlTERISAnd3dzRv3hwzZ86EiKg1IoJp06ahUaNGcHd3R2RkJA4fPmy1n/PnzyMmJgZGoxHe3t545plncOnSJaua9PR09OrVC25ubggMDMScOXPK9LNy5Uq0adMGbm5uCA0NxZo1a6y229JLtdK3r/LvgQNAbq6mrRAREdV2moaq2bNnY8GCBfjoo4+QlZWF2bNnY86cOZg3b55aM2fOHHz44Yf45JNPkJKSgjp16iAqKgpXr15Va2JiYnDgwAFs2LAB33//PbZs2YIxY8ao281mMwYMGIDg4GCkpqZi7ty5eP3117Fw4UK1ZseOHRg5ciSeeeYZ7N27F4MGDcKgQYOQkZFxW71UKw0aAB07Kq+TkjRthYiIqNYTDUVHR8vTTz9tte6RRx6RmJgYERGxWCzi7+8vc+fOVbfn5eWJwWCQZcuWiYhIZmamAJDdu3erNWvXrhWdTie///67iIh8/PHH4uPjIwUFBWrNyy+/LK1bt1bfDxs2TKKjo616CQ8Pl7Fjx9rcS0VMJpMAEJPJZFO9XUycKAKIjBlTdcckIiKqRWz9/tb0TFX37t2RmJiIn3/+GQCwb98+bNu2DQMHDgQAZGdnIycnB5GRkepnvLy8EB4ejuTkZABAcnIyvL290bVrV7UmMjISTk5OSElJUWt69+4NvV6v1kRFReHQoUO4cOGCWlP6OCU1JcexpZdqiZOAEhERVQkXLQ/+yiuvwGw2o02bNnB2dkZxcTHefPNNxMTEAABycnIAAH5+flaf8/PzU7fl5OTA19fXaruLiwvq1atnVRMSElJmHyXbfHx8kJOTU+FxKurlRgUFBSgoKFDfm83mW/06Kkfv3oCTE3D4MHDiBBAYWPU9EBEROQBNz1StWLECS5YswdKlS/HTTz9h8eLFePvtt7F48WIt27Kb+Ph4eHl5qUugFoHGywsIC1Ne82wVERFRpdE0VE2ZMgWvvPIKRowYgdDQUIwaNQovvPAC4uPjAQD+/v4AgNwb7lzLzc1Vt/n7++P06dNW24uKinD+/HmrmvL2UfoYN6spvb2iXm4UFxcHk8mkLidOnKjoV1I5eAmQiIio0mkaqq5cuQInJ+sWnJ2dYbFYAAAhISHw9/dHYmKiut1sNiMlJQUREREAgIiICOTl5SE1NVWt2bhxIywWC8LDw9WaLVu2oLCwUK3ZsGEDWrduDR8fH7Wm9HFKakqOY0svNzIYDDAajVaLJkpPAlpqugoiIiKyoyoaOF+u0aNHS+PGjeX777+X7Oxs+e9//ysNGjSQl156Sa2ZNWuWeHt7yzfffCPp6eny8MMPS0hIiOTn56s19913n3Tu3FlSUlJk27Zt0rJlSxk5cqS6PS8vT/z8/GTUqFGSkZEhy5cvFw8PD/n000/Vmu3bt4uLi4u8/fbbkpWVJdOnTxdXV1fZv3//bfVyK5rc/ScicumSiKurchfgL79U7bGJiIhqOFu/vzUNVWazWSZMmCBBQUHi5uYmzZo1k9dee81q6gOLxSJTp04VPz8/MRgM0r9/fzl06JDVfs6dOycjR44UT09PMRqN8tRTT8nFixetavbt2yc9e/YUg8EgjRs3llmzZpXpZ8WKFdKqVSvR6/XSrl07+eGHH6y229LLrWgWqkREevZUQtVnn1X9sYmIiGowW7+/dSK8HlRVzGYzvLy8YDKZqv5S4PTpwIwZwMiRwNKlVXtsIiKiGszW728++89RlH4OIHM0ERGR3TFUOYp77gHc3JRnAB48qHU3REREtQ5DlaNwcwN69FBeb9yobS9ERES1EEOVIyl9CZCIiIjsiqHKkZTMV5WUBPwxFxgRERHZB0OVI+naFfD0BM6fB9LTte6GiIioVmGociSurkCvXsprXgIkIiKyK4YqR8PnABIREVUKhipHUxKqNm8Gioq07YWIiKgWYahyNB07At7ewMWLwE8/ad0NERFRrcFQ5WicnYG+fZXXHFdFRERkNwxVjqjkEiBDFRERkd0wVDmikklAt20Drl3TthciIqJagqHKEbVrBzRsCOTnAykpWndDRERUKzBUOSKdjpcAiYiI7IyhylGVXALkfFVERER2wVDlqErOVCUnA1euaNsLERFRLcBQ5ahatACaNFEGqu/YoXU3RERENR5DlaPS6XgJkIiIyI4YqhwZB6sTERHZDUOVIys5U7V7t/LYGiIiIvrTGKocWXAw0KwZUFwMbN2qdTdEREQ1GkOVo+MlQCIiIrtgqHJ0DFVERER2wVDl6Pr2Vf5NSwPOn9eyEyIiohqNocrRNWoE3HUXIAJs3qx1N0RERDUWQxXxEiAREZEdMFQRJwElIiKyA4Yquj6u6sABIDdX01aIiIhqKoYqAurXBzp1Ul7zbBUREdGfwlBFCl4CJCIiuiMMVaTgYHUiIqI7wlBFit69AWdn4JdfgBMntO6GiIioxtE0VDVt2hQ6na7MEhsbCwC4evUqYmNjUb9+fXh6emLIkCHIvWEg9fHjxxEdHQ0PDw/4+vpiypQpKCoqsqpJSkpCly5dYDAY0KJFCyQkJJTpZf78+WjatCnc3NwQHh6OXbt2WW23pZcazWgEwsKU17wESEREdNs0DVW7d+/GqVOn1GXDhg0AgKFDhwIAXnjhBXz33XdYuXIlNm/ejJMnT+KRRx5RP19cXIzo6Ghcu3YNO3bswOLFi5GQkIBp06apNdnZ2YiOjka/fv2QlpaGiRMn4tlnn8X69evVmq+++gqTJk3C9OnT8dNPP6Fjx46IiorC6dOn1ZqKeqkVeAmQiIjoz5NqZMKECdK8eXOxWCySl5cnrq6usnLlSnV7VlaWAJDk5GQREVmzZo04OTlJTk6OWrNgwQIxGo1SUFAgIiIvvfSStGvXzuo4w4cPl6ioKPV9t27dJDY2Vn1fXFwsAQEBEh8fLyJiUy+2MJlMAkBMJpPNn6lSP/4oAogEBopYLFp3Q0REVC3Y+v1dbcZUXbt2DV9++SWefvpp6HQ6pKamorCwEJGRkWpNmzZtEBQUhOTkZABAcnIyQkND4efnp9ZERUXBbDbjwIEDak3pfZTUlOzj2rVrSE1NtapxcnJCZGSkWmNLL+UpKCiA2Wy2Wqq1Hj0AV1dlTNWRI1p3Q0REVKNUm1C1evVq5OXl4cknnwQA5OTkQK/Xw9vb26rOz88POTk5ak3pQFWyvWTbrWrMZjPy8/Nx9uxZFBcXl1tTeh8V9VKe+Ph4eHl5qUtgYGDFvwgteXgA99yjvOYlQCIiottSbULV559/joEDByIgIEDrVuwmLi4OJpNJXU7UhLvqOK6KiIjoT6kWoerYsWP43//+h2effVZd5+/vj2vXriEvL8+qNjc3F/7+/mrNjXfglbyvqMZoNMLd3R0NGjSAs7NzuTWl91FRL+UxGAwwGo1WS7VXehJQEW17ISIiqkGqRahatGgRfH19ER0dra4LCwuDq6srEhMT1XWHDh3C8ePHERERAQCIiIjA/v37re7S27BhA4xGI9q2bavWlN5HSU3JPvR6PcLCwqxqLBYLEhMT1Rpbeqk17rkHcHNTngGYlaV1N0RERDVHFQ2cv6ni4mIJCgqSl19+ucy2cePGSVBQkGzcuFH27NkjEREREhERoW4vKiqS9u3by4ABAyQtLU3WrVsnDRs2lLi4OLXmyJEj4uHhIVOmTJGsrCyZP3++ODs7y7p169Sa5cuXi8FgkISEBMnMzJQxY8aIt7e31V2FFfVii2p/91+JyEjlLsB587TuhIiISHO2fn9rHqrWr18vAOTQoUNltuXn58tzzz0nPj4+4uHhIYMHD5ZTp05Z1Rw9elQGDhwo7u7u0qBBA5k8ebIUFhZa1WzatEk6deoker1emjVrJosWLSpzrHnz5klQUJDo9Xrp1q2b7Ny587Z7qUiNCVVvvqmEqkce0boTIiIizdn6/a0T4cCZqmI2m+Hl5QWTyVS9x1ft3AlERAA+PsDZs4BTtbhKTEREpAlbv7/5bUllde0K1K0LXLgA7NundTdEREQ1AkMVleXiAvTqpbzmcwCJiIhswlBF5eN8VURERLeFoYrKVxKqtmwBioq07YWIiKgGYKii8nXsqAxUv3gRSE3VuhsiIqJqj6GKyufkBPTtq7zmJUAiIqIKMVTRzXFcFRERkc0YqujmSp4DuH07UFCgbS9ERETVHEMV3VzbtoCvL5CfD6SkaN0NERFRtcZQRTen0/ESIBERkY0YqujWSi4BchJQIiKiW2KoolsrOVOVnAxcuaJtL0RERNUYQxXdWvPmQGAgUFioDFgnIiKicjFU0a3pdLwESEREZAOGKqoYB6sTERFViKGKKlZypmrPHsBs1rYXIiKiaoqhiioWFKSMrSouBrZu1bobIiKiaomhimzDS4BERES3xFBFtmGoIiIiuiWGKrJN377Kv/v2AefOadoKERFRdcRQRbbx91eeBSgCbN6sdTdERETVDkMV2a7kLkBeAiQiIiqDoYpsVzKuipOAEhERlcFQRbbr00eZYT0zE8jJ0bobIiKiaoWhimxXvz7QsaPymmeriIiIrDBU0e3hJUAiIqJyMVTR7eF8VUREROViqKLb06sX4OwM/PorcPy41t0QERFVGwxVdHuMRqBrV+U1LwESERGpGKro9vESIBERURkMVXT7SiYB3bRJmWGdiIiIGKroT+jRA3B1BU6cUMZWERERkfah6vfff8fjjz+O+vXrw93dHaGhodizZ4+6XUQwbdo0NGrUCO7u7oiMjMThw4et9nH+/HnExMTAaDTC29sbzzzzDC5dumRVk56ejl69esHNzQ2BgYGYM2dOmV5WrlyJNm3awM3NDaGhoVizZo3Vdlt6cQgeHkBEhPKalwCJiIgAaByqLly4gB49esDV1RVr165FZmYm3nnnHfj4+Kg1c+bMwYcffohPPvkEKSkpqFOnDqKionD16lW1JiYmBgcOHMCGDRvw/fffY8uWLRgzZoy63Ww2Y8CAAQgODkZqairmzp2L119/HQsXLlRrduzYgZEjR+KZZ57B3r17MWjQIAwaNAgZGRm31YvDKH0JkIiIiADR0Msvvyw9e/a86XaLxSL+/v4yd+5cdV1eXp4YDAZZtmyZiIhkZmYKANm9e7das3btWtHpdPL777+LiMjHH38sPj4+UlBQYHXs1q1bq++HDRsm0dHRVscPDw+XsWPH2txLRUwmkwAQk8lkU321tnmzCCDi6ytisWjdDRERUaWx9ftb0zNV3377Lbp27YqhQ4fC19cXnTt3xmeffaZuz87ORk5ODiIjI9V1Xl5eCA8PR3JyMgAgOTkZ3t7e6Fpymz+AyMhIODk5ISUlRa3p3bs39Hq9WhMVFYVDhw7hwoULak3p45TUlBzHll5uVFBQALPZbLXUGuHhgLs7cPq08ixAIiIiB6dpqDpy5AgWLFiAli1bYv369fjb3/6Gv//971i8eDEAIOePh/b6+flZfc7Pz0/dlpOTA19fX6vtLi4uqFevnlVNefsofYyb1ZTeXlEvN4qPj4eXl5e6BAYGVvQrqTkMBmXAOsBLgERERNA4VFksFnTp0gVvvfUWOnfujDFjxuCvf/0rPvnkEy3bspu4uDiYTCZ1OXHihNYt2RfnqyIiIlJpGqoaNWqEtm3bWq276667cPyPx5/4+/sDAHJzc61qcnNz1W3+/v44ffq01faioiKcP3/eqqa8fZQ+xs1qSm+vqJcbGQwGGI1Gq6VWKQlVSUmAxaJpK0RERFrTNFT16NEDhw4dslr3888/Izg4GAAQEhICf39/JCYmqtvNZjNSUlIQ8cct/REREcjLy0Nqaqpas3HjRlgsFoSHh6s1W7ZsQWFhoVqzYcMGtG7dWr3TMCIiwuo4JTUlx7GlF4cTFgbUrQtcuADs26d1N0RERNqqooHz5dq1a5e4uLjIm2++KYcPH5YlS5aIh4eHfPnll2rNrFmzxNvbW7755htJT0+Xhx9+WEJCQiQ/P1+tue+++6Rz586SkpIi27Ztk5YtW8rIkSPV7Xl5eeLn5yejRo2SjIwMWb58uXh4eMinn36q1mzfvl1cXFzk7bfflqysLJk+fbq4urrK/v37b6uXW6lVd/+ViI5W7gJ8+22tOyEiIqoUtn5/axqqRES+++47ad++vRgMBmnTpo0sXLjQarvFYpGpU6eKn5+fGAwG6d+/vxw6dMiq5ty5czJy5Ejx9PQUo9EoTz31lFy8eNGqZt++fdKzZ08xGAzSuHFjmTVrVpleVqxYIa1atRK9Xi/t2rWTH3744bZ7uZVaGareeUcJVfffr3UnRERElcLW72+dCB/eVlXMZjO8vLxgMplqz/iqvXuBLl0AT0/g/Hnl8TVERES1iK3f35o/poZquI4dAR8f4NIloNS4NiIiIkfDUEV3xsnp+iNrOLUCERE5MIYqunN8DiARERFDFdlByXxV27YBBQXa9kJERKQRhiq6c3fdBfj5AVevAjt3at0NERGRJhiq6M7pdLwESEREDo+hiuyDzwEkIiIHx1BF9lESqnbuBK5c0bYXIiIiDTBUkX00awYEBgKFhcD27Vp3Q0REVOUYqsg+dDpeAiQiIofGUEX2w1BFREQOjKGK7KfkDsA9ewCTSdteiIiIqhhDFdlPYCDQogVgsQBbt2rdDRERUZViqCL74iVAIiJyUAxVZF+cBJSIiBwUQxXZV0moSksDzp3TtBUiIqKqxFBF9uXnB7Rrp7xOStK0FSIioqrEUEX2x0uARETkgBiqyP44WJ2IiBwQQxXZX58+ygzrWVnAqVNad0NERFQlGKrI/urVAzp1Ul5zXBURETkIhiqqHLwESEREDoahiioHQxURETkYhiqqHL16Ac7OwJEjwLFjWndDRERU6RiqqHLUrQvcfbfymlMrEBGRA2CoosrDS4BERORAGKqo8pSeBFRE216IiIgq2R2HqmPHjiEzMxMWi8Ue/VBt0r07oNcDv/0G/PKL1t0QERFVKptD1b///W+8++67VuvGjBmDZs2aITQ0FO3bt8eJEyfs3iDVYB4eQESE8pqXAImIqJazOVQtXLgQPj4+6vt169Zh0aJF+M9//oPdu3fD29sbb7zxRqU0STUYnwNIREQOwuZQdfjwYXTt2lV9/8033+Dhhx9GTEwMunTpgrfeeguJiYmV0iTVYKUHq3NcFRER1WI2h6r8/HwYjUb1/Y4dO9C7d2/1fbNmzZCTk2Pf7qjmCw8H3N2BM2eAAwe07oaIiKjS2ByqgoODkZqaCgA4e/YsDhw4gB49eqjbc3Jy4OXldVsHf/3116HT6ayWNm3aqNuvXr2K2NhY1K9fH56enhgyZAhyc3Ot9nH8+HFER0fDw8MDvr6+mDJlCoqKiqxqkpKS0KVLFxgMBrRo0QIJCQllepk/fz6aNm0KNzc3hIeHY9euXVbbbemFyqHXAz17Kq95CZCIiGoxm0PV6NGjERsbi5kzZ2Lo0KFo06YNwsLC1O07duxA+/btb7uBdu3a4dSpU+qybds2ddsLL7yA7777DitXrsTmzZtx8uRJPPLII+r24uJiREdH49q1a9ixYwcWL16MhIQETJs2Ta3Jzs5GdHQ0+vXrh7S0NEycOBHPPvss1q9fr9Z89dVXmDRpEqZPn46ffvoJHTt2RFRUFE6fPm1zL3QLnK+KiIgcgdiouLhYpk6dKp06dZL77rtPMjMzrbY/+uij8q9//cvW3YmIyPTp06Vjx47lbsvLyxNXV1dZuXKlui4rK0sASHJysoiIrFmzRpycnCQnJ0etWbBggRiNRikoKBARkZdeeknatWtnte/hw4dLVFSU+r5bt24SGxtr9bMGBARIfHy8zb3YwmQyCQAxmUw2f6ZWSEkRAUS8vUWKirTuhoiI6LbY+v1t85kqJycnzJgxA3v37sXatWtx1113WW1fuXIlnnnmmdsOdYcPH0ZAQACaNWuGmJgYHD9+HACQmpqKwsJCREZGqrVt2rRBUFAQkpOTAQDJyckIDQ2Fn5+fWhMVFQWz2YwDf4zfSU5OttpHSU3JPq5du4bU1FSrGicnJ0RGRqo1tvRSnoKCApjNZqvFIXXpojy2Ji8P2LdP626IiIgqxR1N/nn16lUsXrwYH3/8MX75E5M7hoeHIyEhAevWrcOCBQuQnZ2NXr164eLFi8jJyYFer4e3t7fVZ/z8/NQB8Tk5OVaBqmR7ybZb1ZjNZuTn5+Ps2bMoLi4ut6b0PirqpTzx8fHw8vJSl8DAQNt+MbWNiwvQp4/ympcAiYiolrI5VE2aNAnPP/+8+v7atWuIiIjAX//6V7z66qvo1KnTLc/alGfgwIEYOnQoOnTogKioKKxZswZ5eXlYsWLFbe2nuoqLi4PJZFIXh54cleOqiIiolrM5VP3444/4y1/+or5fsmQJjh07hsOHD+PChQsYOnQo/vnPf95RM97e3mjVqhV++eUX+Pv749q1a8jLy7Oqyc3Nhb+/PwDA39+/zB14Je8rqjEajXB3d0eDBg3g7Oxcbk3pfVTUS3kMBgOMRqPV4rBKJgHduhUoLNS2FyIiokpgc6g6fvw42rZtq77/8ccf8eijjyI4OBg6nQ4TJkzA3r1776iZS5cu4ddff0WjRo0QFhYGV1dXqwlFDx06hOPHjyPij0efREREYP/+/VZ36W3YsAFGo1HtNSIiosykpBs2bFD3odfrERYWZlVjsViQmJio1tjSC1WgQwegXj3g0iVgzx6tuyEiIrI/W0e+e3l5yc8//6y+b9q0qXz++efq++zsbHFzc7ut0fSTJ0+WpKQkyc7Olu3bt0tkZKQ0aNBATp8+LSIi48aNk6CgINm4caPs2bNHIiIiJCIiQv18UVGRtG/fXgYMGCBpaWmybt06adiwocTFxak1R44cEQ8PD5kyZYpkZWXJ/PnzxdnZWdatW6fWLF++XAwGgyQkJEhmZqaMGTNGvL29re4qrKgXWzjs3X8lhgxR7gL85z+17oSIiMhmtn5/2xyq7rnnHnnnnXdERCQjI0OcnJzkyJEj6vakpCQJDg6+rSaHDx8ujRo1Er1eL40bN5bhw4fLL7/8om7Pz8+X5557Tnx8fMTDw0MGDx4sp06dstrH0aNHZeDAgeLu7i4NGjSQyZMnS2FhoVXNpk2bpFOnTqLX66VZs2ayaNGiMr3MmzdPgoKCRK/XS7du3WTnzp1W223ppSIOH6o++kgJVf37a90JERGRzWz9/taJ2PZAtlWrVmHEiBHo2bMnDhw4gLvvvhvfffeduv3ll19GdnZ2rRlkXhnMZjO8vLxgMpkcc3xVVhbQti3g5gZcuKD8S0REVM3Z+v1t85iqwYMHY82aNejQoQNeeOEFfPXVV1bbPTw88Nxzz/35jqn2a9MG8PcHrl4Fdu7UuhsiIiK7svlMFd05hz9TBQCPPQYsWwZMmwa88YbW3RAREVXI7meqDh8+jJEjR5Y7K7jJZMJjjz2GI0eO/LluyXFwvioiIqqlbA5Vc+fORWBgYLkJrWS28Llz59q1OaqFSkJVSgpw+bK2vRAREdmRzaFq8+bNGDp06E23Dxs2DBt59oEqEhICBAUpE4Bu3651N0RERHZzW5N/+vr63nR7gwYNHPsxLGQbnY6XAImIqFayOVR5eXnh119/ven2X375xXEHX9PtKQlVmzZp2wcREZEd2RyqevfujXnz5t10+4cffohevXrZpSmq5UqeA7hnD2AyadsLERGRndgcquLi4rB27Vo8+uij2LVrF0wmE0wmE1JSUjBkyBCsX78ecXFxldkr1RZNmgAtWwIWC7Bli9bdEBER2YXNoapz5874+uuvsWXLFkRERKBevXqoV68eunfvjq1bt2LFihXo0qVLZfZKtQkvARIRUS3jYmthdnY2HnjgARw7dgzr16/H4cOHISJo1aoVBgwYAA8Pj8rsk2qbfv2ATz/lYHUiIqo1bA5VzZs3R3BwMPr164d+/fph5MiRaNKkSWX2RrVZ377Kv/v2AWfPAg0aaNoOERHRnbL58t/GjRsxevRoHDlyBGPGjEFwcDBatmyJsWPHYvny5cjNza3MPqm28fMD2rdXXm/erG0vREREdmDzmaq+ffui7x9nF65evYodO3YgKSkJSUlJWLx4MQoLC9GmTRscOHCgsnql2qZfPyAjQ7kEOGSI1t0QERHdkTt6oPK1a9ewfft2rF27Fp9++ikuXbqE4uJie/ZXq/CByjdYvRoYPBho0wbIytK6GyIionLZ+v1t85kqQAlRO3fuxKZNm5CUlISUlBQEBgaid+/e+Oijj9CnT587bpwcSJ8+ygzrBw8Cp04BjRpp3REREdGfZnOouvfee5GSkoKQkBD06dMHY8eOxdKlS9GIX4T0Z/n4AJ07Az/9pEyt8NhjWndERET0p9k8UH3r1q2oX78+7r33XvTv3x9/+ctfGKjozvE5gEREVEvYHKry8vKwcOFCeHh4YPbs2QgICEBoaCjGjx+Pr7/+GmfOnKnMPqm24iSgRERUS/zpgeoXL17Etm3b1PFV+/btQ8uWLZGRkWHvHmsNDlQvx8WLymXA4mIgOxto2lTrjoiIiKzY+v1t85mqG9WpU0d9VI2Pjw9cXFyQxTu46HbVrQt066a85tkqIiKqwWwOVRaLBbt27cKcOXMwcOBAeHt7o3v37vj444/h7++P+fPn48iRI5XZK9VWvARIRES1gM13/3l7e+Py5cvw9/dHv3798N5776Fv375o3rx5ZfZHjqBfP+DNN5XB6iLKNAtEREQ1jM2hau7cuejXrx9atWpVmf2QI+reHdDrgd9/Bw4fBvh/Y0REVAPZHKrGjh1bmX2QI3N3V4JVUhKwePH1R9a4ugKhoZq2RkREZKs/PVCdyK5KLvm99RYQFqYsHToAM2dq2xcREZGNGKpIezNn3nyQ+rRpDFZERFQjMFSRtvbvV4LTrUybptQRERFVYwxVpK3CQvvWERERaYShioiIiMgOGKqIiIiI7IChirTl6mrfOiIiIo1Um1A1a9Ys6HQ6TJw4UV139epVxMbGon79+vD09MSQIUOQm5tr9bnjx48jOjoaHh4e8PX1xZQpU1BUVGRVk5SUhC5dusBgMKBFixZISEgoc/z58+ejadOmcHNzQ3h4OHbt2mW13ZZe6E8IDQVmzLh1zbhxnK+KiIiqvWoRqnbv3o1PP/0UHTp0sFr/wgsv4LvvvsPKlSuxefNmnDx5Eo888oi6vbi4GNHR0bh27Rp27NiBxYsXIyEhAdNK3U2WnZ2N6Oho9OvXD2lpaZg4cSKeffZZrF+/Xq356quvMGnSJEyfPh0//fQTOnbsiKioKJw+fdrmXugOTJ1662C1ciWQkVF1/RAREf0ZorGLFy9Ky5YtZcOGDdKnTx+ZMGGCiIjk5eWJq6urrFy5Uq3NysoSAJKcnCwiImvWrBEnJyfJyclRaxYsWCBGo1EKCgpEROSll16Sdu3aWR1z+PDhEhUVpb7v1q2bxMbGqu+Li4slICBA4uPjbe7FFiaTSQCIyWSy+TMOJT1dJDX1+rJjh0h4uAgg4ucncvCg1h0SEZEDsvX7W/MzVbGxsYiOjkZkZKTV+tTUVBQWFlqtb9OmDYKCgpCcnAwASE5ORmhoKPz8/NSaqKgomM1mHDhwQK25cd9RUVHqPq5du4bU1FSrGicnJ0RGRqo1tvRCdhAaCnTpcn2JiADWrgU6dQJyc4H+/YEjR7TukoiIqFw2P/uvMixfvhw//fQTdu/eXWZbTk4O9Ho9vL29rdb7+fkhJydHrSkdqEq2l2y7VY3ZbEZ+fj4uXLiA4uLicmsOHjxocy/lKSgoQEFBgfrebDbftJZuwscH2LAB6NMHyMxUgtWWLUBgoNadERERWdHsTNWJEycwYcIELFmyBG5ublq1Uani4+Ph5eWlLoEMAn9OgwZAYiLQsiVw9Chw773AqVNad0VERGRFs1CVmpqK06dPo0uXLnBxcYGLiws2b96MDz/8EC4uLvDz88O1a9eQl5dn9bnc3Fz4+/sDAPz9/cvcgVfyvqIao9EId3d3NGjQAM7OzuXWlN5HRb2UJy4uDiaTSV1OnDhh2y+HyvL3V4JV06bAL78AkZHAmTNad0VERKTSLFT1798f+/fvR1pamrp07doVMTEx6mtXV1ckJiaqnzl06BCOHz+OiIgIAEBERAT2799vdZfehg0bYDQa0bZtW7Wm9D5Kakr2odfrERYWZlVjsViQmJio1oSFhVXYS3kMBgOMRqPVQncgMBDYuBFo3Fi5FDhgAHDhgtZdERERKapo4LxNSt/9JyIybtw4CQoKko0bN8qePXskIiJCIiIi1O1FRUXSvn17GTBggKSlpcm6deukYcOGEhcXp9YcOXJEPDw8ZMqUKZKVlSXz588XZ2dnWbdunVqzfPlyMRgMkpCQIJmZmTJmzBjx9va2uquwol5swbv/7OTQIeVuQECkWzcR/j6JiKgS2fr9Xa1DVX5+vjz33HPi4+MjHh4eMnjwYDl16pTVZ44ePSoDBw4Ud3d3adCggUyePFkKCwutajZt2iSdOnUSvV4vzZo1k0WLFpU59rx58yQoKEj0er1069ZNdu7cabXdll4qwlBlR/v3i9SvrwSrnj1FLl3SuiMiIqqlbP3+1omIaHuuzHGYzWZ4eXnBZDLxUqA97N2rDFrPy1P+/f57wN1d666IiKiWsfX7W/N5qoj+tM6dgXXrAE9PZazVo48C165p3RURETkohiqq2cLDgR9+UM5QrVkDjBgBFBZq3RURETkghiqq+Xr3Br79FjAYgFWrgCeeAIqLte6KiIgcDEMV1Q6RkcD//R/g6gosXw48+yxgsWjdFRERORCGKqo9oqOBZcsAZ2cgIQEYPx7gfRhERFRFGKqodhkyBPjPfwCdDliwAHjxRQYrIiKqEgxVVPs89hjwr38pr999F5g6Vdt+iIjIITBUUe309NPARx8pr998U1mIiIgqEUMV1V6xscDcucrrf/wDeO89bfshIqJajaGKarcXXwRmzFBeT5qkjLMiIiKqBAxVVPv94x9AXJzy+rnngEWLtO2HiIhqJYYqqv10OmVM1cSJyvtnnlGmXiAiIrIjhipyDDqdcifg2LHKFAujRimzrxMREdkJQxU5Dp0O+PhjYPRo5TE2w4crzwskIiKyA4YqcixOTsDnnyuBqrAQeOQRIDFR666IiKgWYKgix+PsDHzxBfDww0BBAfDQQ8C2bVp3RURENRxDFTkmV1fgq6+A++4DrlwB7r8f2LVL666IiKgGY6gix2UwAP/9L9CvH3DxIhAVBaSlad0VERHVUAxV5Njc3YFvvwW6dwfy8oC//AXIzNS6KyIiqoEYqog8PZW7ALt2Bc6eBfr3Bw4f1rorIiKqYRiqiADAywtYvx7o0AHIyVGC1dGjWndFREQ1CEMVUYl69YANG4C77gJOnADuvRf47TetuyIiohqCoYqoNF9f4H//A5o3B7KzlTNWublad0VERDUAQxXRjQIClAlBg4KAn38GIiOVsVZERES3wFBFVJ7gYGDjRiVgZWQAAwYodwcSERHdBEMV0c00b66csfL1BfbuBQYOVOazIiIiKgdDFdGttGmjDF6vVw/YuRN44AFlBnYiIqIbMFQRVaRDB+DHHwGjEdiyBRg0CLh6VeuuiIiommGoIrJFWBiwdi1Qp45y5mroUODaNa27IiKiaoShishW3bsD338PuLkp/z72GFBUpHVXRERUTTBUEd2Ovn2B1asBvR74v/8DnnwSKC7WuCkiIqoOGKqIbldUFLByJeDiAixZAowbB1gsWndFREQaY6gi+jMeeghYuhRwcgL+9S9gwgRAROuuiIhIQ5qGqgULFqBDhw4wGo0wGo2IiIjA2rVr1e1Xr15FbGws6tevD09PTwwZMgS5Nzwy5Pjx44iOjoaHhwd8fX0xZcoUFN0wziUpKQldunSBwWBAixYtkJCQUKaX+fPno2nTpnBzc0N4eDh27dpltd2WXsjBDB0KJCQAOh3w0UfAyy8rwWr/fuCnn64v+/dr3SkREVUF0dC3334rP/zwg/z8889y6NAhefXVV8XV1VUyMjJERGTcuHESGBgoiYmJsmfPHrnnnnuke/fu6ueLioqkffv2EhkZKXv37pU1a9ZIgwYNJC4uTq05cuSIeHh4yKRJkyQzM1PmzZsnzs7Osm7dOrVm+fLlotfr5d///rccOHBA/vrXv4q3t7fk5uaqNRX1YguTySQAxGQy/dlfGVVHn34qosQpkb59r78uvcyYoXWXRET0J9n6/a1pqCqPj4+P/Otf/5K8vDxxdXWVlStXqtuysrIEgCQnJ4uIyJo1a8TJyUlycnLUmgULFojRaJSCggIREXnppZekXbt2VscYPny4REVFqe+7desmsbGx6vvi4mIJCAiQ+Ph4ERGberEFQ1Ut9sEH5YcpBisiohrP1u/vajOmqri4GMuXL8fly5cRERGB1NRUFBYWIjIyUq1p06YNgoKCkJycDABITk5GaGgo/Pz81JqoqCiYzWYcOHBArSm9j5Kakn1cu3YNqampVjVOTk6IjIxUa2zppTwFBQUwm81WC9VS/fpVXDNtGi8FEhHVYpqHqv3798PT0xMGgwHjxo3DqlWr0LZtW+Tk5ECv18Pb29uq3s/PDzk5OQCAnJwcq0BVsr1k261qzGYz8vPzcfbsWRQXF5dbU3ofFfVSnvj4eHh5ealLYGCgbb8UqnkKC+1bR0RENY7moap169ZIS0tDSkoK/va3v2H06NHIzMzUui27iIuLg8lkUpcTJ05o3RIRERFVEhetG9Dr9WjRogUAICwsDLt378YHH3yA4cOH49q1a8jLy7M6Q5Sbmwt/f38AgL+/f5m79EruyCtdc+Nderm5uTAajXB3d4ezszOcnZ3LrSm9j4p6KY/BYIDBYLiN3wbVenv2AJ07K3cMEhFRraL5maobWSwWFBQUICwsDK6urkhMTFS3HTp0CMePH0dERAQAICIiAvv378fp06fVmg0bNsBoNKJt27ZqTel9lNSU7EOv1yMsLMyqxmKxIDExUa2xpRdycK6uttWNHQt06wasWMFH3BAR1TZVNHC+XK+88ops3rxZsrOzJT09XV555RXR6XTy448/iogyjUFQUJBs3LhR9uzZIxERERIREaF+vmRKhQEDBkhaWpqsW7dOGjZsWO6UClOmTJGsrCyZP39+uVMqGAwGSUhIkMzMTBkzZox4e3tb3VVYUS+24N1/tdyMGbe+++/uu0Xc3K6/DwkR+fBDkUuXtO6ciIhuoUZMqfD0009LcHCw6PV6adiwofTv318NVCIi+fn58txzz4mPj494eHjI4MGD5dSpU1b7OHr0qAwcOFDc3d2lQYMGMnnyZCksLLSq2bRpk3Tq1En0er00a9ZMFi1aVKaXefPmSVBQkOj1eunWrZvs3LnTarstvVSEocoB3CxYlUyncPq0yPTpIvXrX99Wr57IP/4hUirEExFR9WHr97dOhM/WqCpmsxleXl4wmUwwGo1at0OVZf9+67v8XF2B0FDrmitXgMWLgXfeAX79VVlnMACjRwOTJgGtW1ddv0REdEu2fn8zVFUhhioqo7gYWL0amDsXSElR1ul0yrMFp0wBevTQtD0iIrL9+7vaDVQncijOzsCQIUByMrB1qxKmRIBvvgF69gS6dwdWrVLCFxERVWsMVUTVgU6nhKhvvgGysoBnnwX0eiVsPfIIcNddwCefAPn5WndKREQ3wVBFVN20aQN89hlw7Bjw2muAjw9w+DDwt78BwcHAjBnA2bNad0lERDdgqCKqrvz9gX/+Ezh+HPjgA6BpU+DMGWD6dCAoCBg//vogdyIi0hxDFVF15+kJ/P3vytmqZcuALl2Uy4Dz5wOtWgFDhwI3PFmAiIiqHkMVUU3h4gKMGKE86mbjRmDgQMBiAb7+GggPB/r0Ab77TllHRERVjqGKqKbR6YB+/YA1a5Q5sUaPVubC2rJFuXuwfXvg88+BggKtOyUicigMVUQ1Wfv2QEICkJ0NvPQSYDRev3uwaVMgPh64cEHrLomIHAJDFVFt0LgxMHs2cOIE8PbbQJMmQE4O8OqrQGAgMHGicjchERFVGoYqotrEaAQmTwaOHAH+8x+gQwfg8mXl7sHmzYHHHgP27tW6SyKiWomhiqg2cnUFRo0C0tKA9euByEhlVvaSuwcjI4F165TZ24mIyC747L8qxGf/kab27lUe4Lx8+fXH3oSGAi++qNxVqNdb19vyYGgiIgfAZ/8RkbXOnYEvv1QuDb7wgjL/Vcndg82aKWOxTCalduZM5dJhWNj1pUMHZT0REZWLZ6qqEM9UUbWSlwd8+qky3urUKWWd0aicjdq+/eafmzEDmDq1SlokIqoObP3+ZqiqQgxVVC0VFABLlypnqjIzbftMejovBRKRw+DlPyKyjcEAPPWUcinw/fdt+0zpsVZERASAoYqISjg5Ab162VZbMtCdiIhUDFVEdPuio4FXXlFmbyciIgAMVURUmqurbXVnzigzuLdtC9x9N/DRR8DZs5XbGxFRNcdQRUTXhYYqd/fdyrRpwP/9n/LwZhcXYM8e4PnngYAAYPBgYNUq4Nq1qumXiKga4d1/VYh3/1GNMXOmEp5udON0CmfOKLO0/+c/QGrq9fX16wMjRwJPPAF07QrodJXfMxFRJeGUCtUQQxXVKLc7o3pGhhKuvvzy+rxXAHDXXUq4evxx5UHPREQ1DENVNcRQRQ6hqAhITAQWL1YuBV69qqzX6YD+/ZUZ3AcPBurU0bZPIiIbMVRVQwxV5HDMZmDlSuUM1pYt19d7egKPPqoErN69lekciIiqKYaqaoihihzakSPKpcHFi5XXJYKDgVGjlEuELVtq1x8R0U0wVFVDDFVEAESUZwv+5z/AV18pZ7NKREQoZ6+GDQN8fLTrkYioFIaqaoihiugG+fnAt98qZ6/WrwcsFmW9waBM2fDEE0BUlO3zZxERVQKGqmqIoYroFk6dUh7svHixcudhCV9f4LHHlDNYnTpp1h4ROS6GqmqIoYrIBiJAWppyeXDJEmUurBIdOihnr2JiAH9/zVokIsfCUFUNMVQR3abCQuWy4OLFymXCkpnanZyUy4KjRyuXCd3dte2TiGo1hqpqiKGK6A5cuKAMbF+8GNi58/p6Ly9lYPsTTwA9epSdvf12JzElIrqBrd/fmk4OEx8fj7vvvht169aFr68vBg0ahEOHDlnVXL16FbGxsahfvz48PT0xZMgQ5ObmWtUcP34c0dHR8PDwgK+vL6ZMmYKioiKrmqSkJHTp0gUGgwEtWrRAQkJCmX7mz5+Ppk2bws3NDeHh4di1a9dt90JElcTHBxg3DkhOBg4dAl57DQgKAkwm4LPPgF69lCkZZswAsrOVz8ycqVwyDAu7vnTooKwnIrI30VBUVJQsWrRIMjIyJC0tTe6//34JCgqSS5cuqTXjxo2TwMBASUxMlD179sg999wj3bt3V7cXFRVJ+/btJTIyUvbu3Str1qyRBg0aSFxcnFpz5MgR8fDwkEmTJklmZqbMmzdPnJ2dZd26dWrN8uXLRa/Xy7///W85cOCA/PWvfxVvb2/Jzc21uZeKmEwmASAmk+nP/sqIqLTiYpGNG0WefFKkTh0RZUSWsgQHW7+/cZkxQ+vuiaiGsPX7W9NQdaPTp08LANm8ebOIiOTl5Ymrq6usXLlSrcnKyhIAkpycLCIia9asEScnJ8nJyVFrFixYIEajUQoKCkRE5KWXXpJ27dpZHWv48OESFRWlvu/WrZvExsaq74uLiyUgIEDi4+Nt7qUiDFVElejSJZH//EckMvLWYar0kp6udddEVAPY+v1drZ4NYTKZAAD16tUDAKSmpqKwsBCRkZFqTZs2bRAUFITk5GQAQHJyMkJDQ+Hn56fWREVFwWw248CBA2pN6X2U1JTs49q1a0hNTbWqcXJyQmRkpFpjSy83KigogNlstlqIqJLUqaPMzL5hA/DDD7Z9pvRYKyKiO1RtQpXFYsHEiRPRo0cPtG/fHgCQk5MDvV4Pb29vq1o/Pz/k5OSoNaUDVcn2km23qjGbzcjPz8fZs2dRXFxcbk3pfVTUy43i4+Ph5eWlLoGBgTb+Nojojtg63cI//gF88831hz4TEd2BahOqYmNjkZGRgeXLl2vdit3ExcXBZDKpy4kTJ7RuiYhKW7sWGDQIaNhQmWD0v/8FrlzRuisiqqGqRagaP348vv/+e2zatAlNmjRR1/v7++PatWvIy8uzqs/NzYX/H/9L1N/fv8wdeCXvK6oxGo1wd3dHgwYN4OzsXG5N6X1U1MuNDAYDjEaj1UJEVcDWx9o8/jjQpAlw6RKwbBkwZIgyg/vw4cDKlcDly5XbJxHVKpqGKhHB+PHjsWrVKmzcuBEhISFW28PCwuDq6orExER13aFDh3D8+HFEREQAACIiIrB//36cPn1ardmwYQOMRiPatm2r1pTeR0lNyT70ej3CwsKsaiwWCxITE9UaW3ohomoiNFSZWuFWZswAvvgCOHZMmfdq8mQgOFgJUitWKHNfNWwIPPoosHy5EryIiG6lasbNl+9vf/ubeHl5SVJSkpw6dUpdrly5otaMGzdOgoKCZOPGjbJnzx6JiIiQiIgIdXvJlAoDBgyQtLQ0WbdunTRs2LDcKRWmTJkiWVlZMn/+/HKnVDAYDJKQkCCZmZkyZswY8fb2trqrsKJeKsK7/4iq2IwZtzedgsUismuXyEsviYSEWH/GzU1k0CCRJUtE+P/DRA6lRkypAKDcZdGiRWpNfn6+PPfcc+Lj4yMeHh4yePBgOXXqlNV+jh49KgMHDhR3d3dp0KCBTJ48WQoLC61qNm3aJJ06dRK9Xi/NmjWzOkaJefPmSVBQkOj1eunWrZvs3LnTarstvdwKQxWRBtLTRVJTry+2TqNgsSj1cXEiLVpYByy9XuTBB5UpHC5cqNT2iUh7tn5/8zE1VYiPqSGqoUSA9HRlnNXKlcDPP1/f5uoKDBigXCZ8+GFl5nciqlX47L9qiKGKqBYQATIygK+/VgJWVtb1bS4uQGSkErAGDQLq19esTSKyH4aqaoihiqgWysy8HrAyMq6vd3YG7r0XGDr0+rQNRFQjMVRVQwxVRLXcwYPA//2fErD27bu+3tkZ6NtXOYM1eDBww0TDRFS9MVRVQwxVRA7k8GHlDNbXXwM//XR9vZMT0Lu3ErAeeQRo1Ei7HonIJgxV1RBDFZGD+vVX5QzW118Du3dfX6/TAT17KgFryBCgceOb72P/futnFbq6KvNxEVGlY6iqhhiqiAhHj16/RJiSYr2te3dlDNaQIUDpZ4XOnAlMm1Z2XzNmAFOnVmq7RMRQVS0xVBGRlePHlecNrlwJ7NhhvS08XAlYv/8OvPfezffBYEVU6RiqqiGGKiK6qd9/v36JcNs2ZeoGW6Wn81IgUSWy9fu7WjxQmYjI4TVuDPz978CWLUrA+ugjICzMts+WHmtFRJphqCIiqm4aNQJiY4GFC22rnzJFuUS4axcDFpGGXLRugIiI7tDGjcoCAO7uynisHj2UJSIC8PbWtD0iR8FQRURUXbm62lY3YQLwyy/KYPcLF4CkJGUBlGkb2re/HrJ69ACaNlXWE5FdcaB6FeJAdSK6bTebTqFE6bv/LBZlVvft25Vl2zZljqwbBQRYh6xOnZTnFhJRuXj3XzXEUEVEf8qdzFOVk6OcwSoJWqmpQFGRdY2HB3DPPddD1j33AF5e9uufqIZjqKqGGKqI6E+z14zqV64os7qXhKwdO4C8POsanU7Zd8+e14NWUBAvGZLDYqiqhhiqiKjasViAzMzrIWv7duDIkbJ1jRsr4aokaHXowEuG5DAYqqohhioiqhFOnbIOWXv3lr1k6Omp3GVYErLuuQeoW7fiffMZhlQDMVRVQwxVRFQjXb6sXDLctk0JWcnJgMlkXePkpJy9Kn02q/TzCwE+w5BqLIaqaoihiohqBYsFOHDg+h2G27crD4q+UWDg9TFZmZnAggU33yeDFVVjDFXVEEMVEdVaJ09ah6y0NKC4+Pb2wWcYUjVl6/c3RxkSEdGdCwgAhg5VFgC4dEl5bM727cCaNcDOnRXv44svgIEDgXbtAF/fyu2XqBLwTFUV4pkqInJIP/1k+8OhSzRsqISr9u2VpV07ZfHxqZweiW6BZ6qIiKhm6dMH+O03ZUqHM2esH7dTonHj62Gr5N+2bZW7EYk0xlBFRESVy9ZnGM6bp4ypunIFyMoCMjKUAfEZGcpy4gTw++/K8uOP1p9t2tQ6aLVvD7RpA7i52f3HIboZXv6rQrz8R0QO63aeYXgzJpNyF2HpoHXggPIonvI4OQEtWliHrXbtgFatbA96N8P5thwK7/6rhhiqiMihVdY8VefOlQ1aGRnA+fPl17u6Aq1blx2z1awZ4Oys3c9B1RZDVTXEUEVEDq+qzvCIALm5ZYPWgQPAxYvlf8bNDbjrLuug1b699XMP7XHGjWochqpqiKGKiEhjIsrYrBuDVmYmkJ9f/mc8PZWAFRAArFpV8TE431atw7v/iIiIbqTTKWeegoKA+++/vr64GMjOtg5aGRnAwYPKnFspKbYf45dfgJYtOUjeAfFMVRXimSoiohqmsFAJSRkZwP/+ByxcaPtn/f2VuxKbNgWCg61fBwcDHh6V0zPZHS//VUMMVURENZitk5i6u9/8UmJpvr5lw1bp11Ux9xbvYrQJL/8RERHZk63TMOzcqUxSeuyY8qDpo0etXx89CpjNwOnTyrJ7d/n7qV//5oGraVPgTv/HOe9itD/R0ObNm+WBBx6QRo0aCQBZtWqV1XaLxSJTp04Vf39/cXNzk/79+8vPP/9sVXPu3Dl57LHHpG7duuLl5SVPP/20XLx40apm37590rNnTzEYDNKkSROZPXt2mV5WrFghrVu3FoPBIO3bt5cffvjhtnupiMlkEgBiMplu63NERFRNzJghogx3L3+ZMcO2/Vy4ILJ3r8iqVSLvvy8ycaLIoEEinTuL+Pjc+hgli4+PSKdOyucmThR57z1lf3v3ipw/L2KxVP7P4SBs/f7WNFStWbNGXnvtNfnvf/9bbqiaNWuWeHl5yerVq2Xfvn3y0EMPSUhIiOTn56s19913n3Ts2FF27twpW7dulRYtWsjIkSPV7SaTSfz8/CQmJkYyMjJk2bJl4u7uLp9++qlas337dnF2dpY5c+ZIZmam/OMf/xBXV1fZv3//bfVSEYYqIqJa4GaBxJ5BxGQSSU8X+fZbkQ8/FJk8WWTIEJGwMJEGDWwLXUajSIcOIg8+KPL88yLvvCPyf/8nsny5bZ9PT7ffz1PD1YhQVdqNocpisYi/v7/MnTtXXZeXlycGg0GWLVsmIiKZmZkCQHbv3q3WrF27VnQ6nfz+++8iIvLxxx+Lj4+PFBQUqDUvv/yytG7dWn0/bNgwiY6OtuonPDxcxo4da3MvtmCoIiKqJdLTRVJTry9VHUAuXhTJyBD5/nuR+fNFpkwRGTpUpFs3EV9f20JTRcvq1SJm863PeDkIW7+/q+2YquzsbOTk5CAyMlJd5+XlhfDwcCQnJ2PEiBFITk6Gt7c3unbtqtZERkbCyckJKSkpGDx4MJKTk9G7d2/o9Xq1JioqCrNnz8aFCxfg4+OD5ORkTJo0yer4UVFRWL16tc29lKegoAAFBQXqe7PZfEe/EyIiqia0HsxdMndWu3blb79yBTh+vPwxXYcPK7PQV2TQIOVfd3fAz+/mi6/v9dfe3tcnSq1K1WTAfbUNVTl/PMvJz8/Par2fn5+6LScnB76+vlbbXVxcUK9ePauakJCQMvso2ebj44OcnJwKj1NRL+WJj4/HG2+8UfEPS0REZE8eHsoDpdu0KbvN1rsY3dyAq1eVOxlLAllF9HrrkFVe8CpZ6tdXns94p6rRgPtqG6pqg7i4OKszYGazGYGBgRp2REREDs/Wuxh37VKeh5ibe+vl9GnlX5MJuHYN+O03ZamIszPQsOHNQ1fppWFDwKWcyHKrxwaVrK/CYFVtQ5W/vz8AIDc3F40aNVLX5+bmolOnTmrN6dOnrT5XVFSE8+fPq5/39/dHbm6uVU3J+4pqSm+vqJfyGAwGGAwGm35eIiKiKhEaqpzFqegZhiWXz5o1U5aKXL16PWDdKnzl5iqXH4uLgZwcZamITqec2SodvpydgSVLbv25adOUy5hVdCmw2oaqkJAQ+Pv7IzExUQ0uZrMZKSkp+Nvf/gYAiIiIQF5eHlJTUxH2x6nMjRs3wmKxIDw8XK157bXXUFhYCNc/0vmGDRvQunVr+Pj4qDWJiYmYOHGievwNGzYgIiLC5l6IiIhqjJKzN/a8bObmdv0RQBUpLATOnLl18CpZzpwBLBbg7Fllycy8vb5Kj7WqZJqGqkuXLuGXX35R32dnZyMtLQ316tVDUFAQJk6ciH/+859o2bIlQkJCMHXqVAQEBGDQH4Pn7rrrLtx3333461//ik8++QSFhYUYP348RowYgYCAAADAY489hjfeeAPPPPMMXn75ZWRkZOCDDz7Ae++9px53woQJ6NOnD9555x1ER0dj+fLl2LNnDxb+8TgCnU5XYS9EREQ1ytSpylkcLQZ4u7oqD6j+47v6loqLlTNbNwavffuAxYsrv9fbUUV3I5Zr06ZNAqDMMnr0aBG5PuGmn5+fGAwG6d+/vxw6dMhqH+fOnZORI0eKp6enGI1Geeqpp245+Wfjxo1l1qxZZXpZsWKFtGrVSvR6vbRr1+6mk3/eqpeKcEoFIiIiO0lNtW1qiNTUOz6Urd/ffPZfFeKz/4iIiOxk/36gQ4eK69LT7/jsm63f33a4l5GIiIioipUMuL+V0gPuqwBDFREREdVMU6fePFhxnioiIiKi26DlgPsbMFQRERFRzab1Y4P+wMt/RERERHbAUEVERERkBwxVRERERHbAUEVERERkBwxVRERERHbAUEVERERkBwxVRERERHbAUEVERERkBwxVRERERHbAGdWrkIgAUJ52TURERDVDyfd2yff4zTBUVaGLFy8CAAIDAzXuhIiIiG7XxYsX4eXlddPtOqkodpHdWCwWnDx5EnXr1oVOp9O6nWrJbDYjMDAQJ06cgNFo1Lodh8e/R/XCv0f1wr9H9VKZfw8RwcWLFxEQEAAnp5uPnOKZqirk5OSEJk2aaN1GjWA0GvkfqWqEf4/qhX+P6oV/j+qlsv4etzpDVYID1YmIiIjsgKGKiIiIyA4YqqhaMRgMmD59OgwGg9atEPj3qG7496he+PeoXqrD34MD1YmIiIjsgGeqiIiIiOyAoYqIiIjIDhiqiIiIiOyAoYqIiIjIDhiqSHPx8fG4++67UbduXfj6+mLQoEE4dOiQ1m3RH2bNmgWdToeJEydq3YpD+/333/H444+jfv36cHd3R2hoKPbs2aN1Ww6puLgYU6dORUhICNzd3dG8eXPMnDmzwufCkX1s2bIFDz74IAICAqDT6bB69Wqr7SKCadOmoVGjRnB3d0dkZCQOHz5cJb0xVJHmNm/ejNjYWOzcuRMbNmxAYWEhBgwYgMuXL2vdmsPbvXs3Pv30U3To0EHrVhzahQsX0KNHD7i6umLt2rXIzMzEO++8Ax8fH61bc0izZ8/GggUL8NFHHyErKwuzZ8/GnDlzMG/ePK1bcwiXL19Gx44dMX/+/HK3z5kzBx9++CE++eQTpKSkoE6dOoiKisLVq1crvTdOqUDVzpkzZ+Dr64vNmzejd+/eWrfjsC5duoQuXbrg448/xj//+U906tQJ77//vtZtOaRXXnkF27dvx9atW7VuhQA88MAD8PPzw+eff66uGzJkCNzd3fHll19q2Jnj0el0WLVqFQYNGgRAOUsVEBCAyZMn48UXXwQAmEwm+Pn5ISEhASNGjKjUfnimiqodk8kEAKhXr57GnTi22NhYREdHIzIyUutWHN63336Lrl27YujQofD19UXnzp3x2Wefad2Ww+revTsSExPx888/AwD27duHbdu2YeDAgRp3RtnZ2cjJybH675aXlxfCw8ORnJxc6cfnA5WpWrFYLJg4cSJ69OiB9u3ba92Ow1q+fDl++ukn7N69W+tWCMCRI0ewYMECTJo0Ca+++ip2796Nv//979Dr9Rg9erTW7TmcV155BWazGW3atIGzszOKi4vx5ptvIiYmRuvWHF5OTg4AwM/Pz2q9n5+fuq0yMVRRtRIbG4uMjAxs27ZN61Yc1okTJzBhwgRs2LABbm5uWrdDUP7HRteuXfHWW28BADp37oyMjAx88sknDFUaWLFiBZYsWYKlS5eiXbt2SEtLw8SJExEQEMC/h4Pj5T+qNsaPH4/vv/8emzZtQpMmTbRux2Glpqbi9OnT6NKlC1xcXODi4oLNmzfjww8/hIuLC4qLi7Vu0eE0atQIbdu2tVp311134fjx4xp15NimTJmCV155BSNGjEBoaChGjRqFF154AfHx8Vq35vD8/f0BALm5uVbrc3Nz1W2ViaGKNCciGD9+PFatWoWNGzciJCRE65YcWv/+/bF//36kpaWpS9euXRETE4O0tDQ4Oztr3aLD6dGjR5lpRn7++WcEBwdr1JFju3LlCpycrL8+nZ2dYbFYNOqISoSEhMDf3x+JiYnqOrPZjJSUFERERFT68Xn5jzQXGxuLpUuX4ptvvkHdunXV695eXl5wd3fXuDvHU7du3TLj2erUqYP69etznJtGXnjhBXTv3h1vvfUWhg0bhl27dmHhwoVYuHCh1q05pAcffBBvvvkmgoKC0K5dO+zduxfvvvsunn76aa1bcwiXLl3CL7/8or7Pzs5GWloa6tWrh6CgIEycOBH//Oc/0bJlS4SEhGDq1KkICAhQ7xCsVEKkMQDlLosWLdK6NfpDnz59ZMKECVq34dC+++47ad++vRgMBmnTpo0sXLhQ65YcltlslgkTJkhQUJC4ublJs2bN5LXXXpOCggKtW3MImzZtKvc7Y/To0SIiYrFYZOrUqeLn5ycGg0H69+8vhw4dqpLeOE8VERERkR1wTBURERGRHTBUEREREdkBQxURERGRHTBUEREREdkBQxURERGRHTBUEREREdkBQxURERGRHTBUEVGtcPToUeh0OqSlpWndiurgwYO455574Obmhk6dOt3256vjz0REN8dQRUR28eSTT0Kn02HWrFlW61evXg2dTqdRV9qaPn066tSpg0OHDlk9i0wrCQkJ8Pb21roNolqLoYqI7MbNzQ2zZ8/GhQsXtG7Fbq5du/anP/vrr7+iZ8+eCA4ORv369e3YlbaKi4v58GCicjBUEZHdREZGwt/fH/Hx8Tetef3118tcCnv//ffRtGlT9f2TTz6JQYMG4a233oKfnx+8vb0xY8YMFBUVYcqUKahXrx6aNGmCRYsWldn/wYMH0b17d7i5uaF9+/bYvHmz1faMjAwMHDgQnp6e8PPzw6hRo3D27Fl1e9++fTF+/HhMnDgRDRo0QFRUVLk/h8ViwYwZM9CkSRMYDAZ06tQJ69atU7frdDqkpqZixowZ0Ol0eP3112+6nzlz5qBFixYwGAwICgrCm2++WW5teWeabjwTuG/fPvTr1w9169aF0WhEWFgY9uzZg6SkJDz11FMwmUzQ6XRWPRUUFODFF19E48aNUadOHYSHhyMpKanMcb/99lu0bdsWBoMBx48fR1JSErp164Y6derA29sbPXr0wLFjx8rtncgRMFQRkd04Ozvjrbfewrx58/Dbb7/d0b42btyIkydPYsuWLXj33Xcxffp0PPDAA/Dx8UFKSgrGjRuHsWPHljnOlClTMHnyZOzduxcRERF48MEHce7cOQBAXl4e7r33XnTu3Bl79uzBunXrkJubi2HDhlntY/HixdDr9di+fTs++eSTcvv74IMP8M477+Dtt99Geno6oqKi8NBDD+Hw4cMAgFOnTqFdu3aYPHkyTp06hRdffLHc/cTFxWHWrFmYOnUqMjMzsXTpUvj5+f3p31tMTAyaNGmC3bt3IzU1Fa+88gpcXV3RvXt3vP/++zAajTh16pRVT+PHj0dycjKWL1+O9PR0DB06FPfdd5/6swDAlStXMHv2bPzrX//CgQMHUK9ePQwaNAh9+vRBeno6kpOTMWbMGIe91EsEAKiSxzYTUa03evRoefjhh0VE5J577pGnn35aRERWrVolpf9TM336dOnYsaPVZ9977z0JDg622ldwcLAUFxer61q3bi29evVS3xcVFUmdOnVk2bJlIiKSnZ0tAGTWrFlqTWFhoTRp0kRmz54tIiIzZ86UAQMGWB37xIkTAkB9in2fPn2kc+fOFf68AQEB8uabb1qtu/vuu+W5555T33fs2FGmT59+032YzWYxGAzy2Weflbu95Gfau3eviIgsWrRIvLy8rGpu/P3WrVtXEhISyt1feZ8/duyYODs7y++//261vn///hIXF6d+DoCkpaWp28+dOycAJCkp6aY/H5Gj4ZkqIrK72bNnY/HixcjKyvrT+2jXrh2cnK7/J8rPzw+hoaHqe2dnZ9SvXx+nT5+2+lxERIT62sXFBV27dlX72LdvHzZt2gRPT091adOmDQBl/FOJsLCwW/ZmNptx8uRJ9OjRw2p9jx49butnzsrKQkFBAfr372/zZyoyadIkPPvss4iMjMSsWbOsfq7y7N+/H8XFxWjVqpXV72Xz5s1Wn9Xr9ejQoYP6vl69enjyyScRFRWFBx98EB988AFOnTplt5+DqCZiqCIiu+vduzeioqIQFxdXZpuTkxNExGpdYWFhmTpXV1er9zqdrtx1tzNg+tKlS3jwwQeRlpZmtRw+fBi9e/dW6+rUqWPzPu+Eu7v7bdXb8rt7/fXXceDAAURHR2Pjxo1o27YtVq1addN9Xrp0Cc7OzkhNTbX6nWRlZeGDDz6w6vXGS3uLFi1CcnIyunfvjq+++gqtWrXCzp07b+tnIqpNGKqIqFLMmjUL3333HZKTk63WN2zYEDk5OVbhwJ7zMJX+Ui8qKkJqairuuusuAECXLl1w4MABNG3aFC1atLBabidIGY1GBAQEYPv27Vbrt2/fjrZt29q8n5YtW8Ld3d3m6RYaNmyIixcv4vLly+q68n53rVq1wgsvvIAff/wRjzzyiDqgX6/Xo7i42Kq2c+fOKC4uxunTp8v8Tvz9/SvsqXPnzoiLi8OOHTvQvn17LF261Kafhag2YqgiokoRGhqKmJgYfPjhh1br+/btizNnzmDOnDn49ddfMX/+fKxdu9Zux50/fz5WrVqFgwcPIjY2FhcuXMDTTz8NAIiNjcX58+cxcuRI7N69G7/++ivWr1+Pp556qkzYqMiUKVMwe/ZsfPXVVzh06BBeeeUVpKWlYcKECTbvw83NDS+//DJeeukl/Oc//8Gvv/6KnTt34vPPPy+3Pjw8HB4eHnj11Vfx66+/YunSpUhISFC35+fnY/z48UhKSsKxY8ewfft27N69Ww2VTZs2xaVLl5CYmIizZ8/iypUraNWqFWJiYvDEE0/gv//9L7Kzs7Fr1y7Ex8fjhx9+uGnv2dnZiIuLQ3JyMo4dO4Yff/wRhw8fVo9F5IgYqoio0syYMaPM5bm77roLH3/8MebPn4+OHTti165dN70z7s+YNWsWZs2ahY4dO2Lbtm349ttv0aBBAwBQzy4VFxdjwIABCA0NxcSJE+Ht7W01fssWf//73zFp0iRMnjwZoaGhWLduHb799lu0bNnytvYzdepUTJ48GdOmTcNdd92F4cOHlxknVqJevXr48ssvsWbNGoSGhmLZsmVWUzU4Ozvj3LlzeOKJJ9CqVSsMGzYMAwcOxBtvvAEA6N69O8aNG4fhw4ejYcOGmDNnDgDlMt4TTzyByZMno3Xr1hg0aBB2796NoKCgm/bt4eGBgwcPYsiQIWjVqhXGjBmD2NhYjB079rZ+fqLaRCc3XqAnIiIiotvGM1VEREREdsBQRURERGQHDFVEREREdsBQRURERGQHDFVEREREdsBQRURERGQHDFVEREREdsBQRURERGQHDFVEREREdsBQRURERGQHDFVEREREdsBQRURERGQH/w/AgVkLq72xKAAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "58ZB1rCZUVfH"
},
"source": [
"### Fitting the k-means to the dataset with k=4"
]
},
{
"cell_type": "code",
"metadata": {
"id": "0K7mijvHUW6Z"
},
"source": [
"model=KMeans(n_clusters=4, random_state=0)\n",
"y_means = model.fit_predict(X)"
],
"execution_count": 7,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "rTMd_brsUctX"
},
"source": [
"### Visualizing the clusters for k=4\n",
"\n",
"Cluster 1: Customers with medium income and low spend\n",
"\n",
"Cluster 2: Customers with high income and medium to high spend\n",
"\n",
"Cluster 3: Customers with low income\n",
"\n",
"Cluster 4: Customers with medium income but high spend"
]
},
{
"cell_type": "code",
"metadata": {
"id": "PXDHbM4aUdvc",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 472
},
"outputId": "1e9f9004-c071-45e1-e289-347053165a82"
},
"source": [
"plt.scatter(X[y_means==0,0],X[y_means==0,1],s=50, c='brown',label='1')\n",
"plt.scatter(X[y_means==1,0],X[y_means==1,1],s=50, c='blue',label='2')\n",
"plt.scatter(X[y_means==2,0],X[y_means==2,1],s=50, c='green',label='3')\n",
"plt.scatter(X[y_means==3,0],X[y_means==3,1],s=50, c='cyan',label='4')\n",
"plt.scatter(model.cluster_centers_[:,0], model.cluster_centers_[:,1],s=100,marker='s', c='red', label='Centroids')\n",
"plt.title('Income Spent Analysis')\n",
"plt.xlabel('Income')\n",
"plt.ylabel('Spent')\n",
"plt.legend()\n",
"plt.show()"
],
"execution_count": 8,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnSxJREFUeJzt3Xl8VPX1+P/XLIEEQsAgIeQHCCqLFEQIVNOwKKCASIHQKooGrdUiQYHghh9xg35xqSAqBGutSIsFRQFxQdkhCBSCuCBLsCgCBlSEEEgwydzfHzczzExmuXfmzprzfDzywMzcmfuemzFz8n6f9zkmRVEUhBBCCCHilDnSAxBCCCGECCUJdoQQQggR1yTYEUIIIURck2BHCCGEEHFNgh0hhBBCxDUJdoQQQggR1yTYEUIIIURck2BHCCGEEHFNgh0hhBBCxDUJdoQQIo488cQTmEymkDz3+vXrMZlMrF+/PiTPL0SoSLAjRJjNnz8fk8nEjh07Ij2UiCsrK+Pxxx+nc+fONGzYkKZNm3LFFVcwYcIEjh49GunhAfD111/zxBNP8O233+p+7IMPPojJZOKmm24yfmBCCM2skR6AEKJuqqyspE+fPuzdu5cxY8Zw7733UlZWxu7du3nzzTcZMWIEGRkZkR4mX3/9NU8++SRXX301bdq00fw4RVH4z3/+Q5s2bVixYgWnT5+mUaNGoRtoGPTp04fy8nLq1asX6aEIoYsEO0KIiFi2bBmfffYZCxcu5JZbbnG5r6Kigl9//TVCIzPG+vXrOXz4MGvXrmXgwIG8++67jBkzJtLDCorZbCYxMTHSwxBCN1nGEiIK3H777SQnJ3PkyBGGDx9OcnIyzZo14/7776e6utrlWJvNxuzZs+nSpQuJiYk0a9aMQYMGuSyLVVVVMW3aNC655BLq169PmzZteOSRRzh37pzLc7Vp04YbbriB9evX06NHD5KSkujSpYsjJ+Pdd991nCczM5PPPvus1tj37t3LH/7wB1JTU0lMTKRHjx689957fl/zN998A0B2dnat+xITE0lJSal1ff73v/8xcOBAGjZsSEZGBk899RSKotS6Pi+88AK/+c1vSExMpHnz5vzlL3/hl19+8fjaCwsL+e1vf0tiYiIXX3wxCxYscBwzf/58/vjHPwJwzTXXYDKZNOesLFy4kE6dOnHNNdcwYMAAFi5cWOsYew7MW2+9xV//+ldatmxJYmIi/fv358CBAy7Hbtq0iT/+8Y+0bt2a+vXr06pVKyZNmkR5ebnPcfTt25euXbt6vK9Dhw4MHDjQ8f2iRYvIzMykUaNGpKSk0KVLF2bPnl1rvM6vv7i4mJEjR5Kenk5iYiItW7Zk1KhRnDp1yu81EiJcJNgRIkpUV1czcOBAmjZtyt/+9jf69u3L888/z9///neX4+68804mTpxIq1ateOaZZ3j44YdJTExk69atjmP+/Oc/89hjj9G9e3dmzZpF3759mTFjBqNGjap13gMHDnDLLbcwdOhQZsyYwS+//MLQoUNZuHAhkyZN4tZbb+XJJ5/km2++4cYbb8Rmszkeu3v3bq666ir27NnDww8/zPPPP0/Dhg0ZPnw4S5cu9fl6L7roIgAWLFhQK2Dxdn0GDRpE8+bNefbZZ8nMzOTxxx/n8ccfdznuL3/5Cw888ADZ2dnMnj2bO+64g4ULFzJw4EAqKytrvfY//OEPXHvttTz//PNccMEF3H777ezevRtQl23uu+8+AB555BH+9a9/8a9//YvLLrvM51jPnTvHO++8w8033wzAzTffzNq1aykpKfF4/NNPP83SpUu5//77mTJlClu3bmX06NEux7z99tucPXuWe+65h5deeomBAwfy0ksvkZub63Mst912G1988QVfffWVy+3bt29n//793HrrrQCsWrWKm2++mQsuuIBnnnmGp59+mquvvprNmzd7fe5ff/2VgQMHsnXrVu69917mzJnD3Xffzf/+9z9Onjzpc1xChJUihAir119/XQGU7du3O24bM2aMAihPPfWUy7HdunVTMjMzHd+vXbtWAZT77ruv1vPabDZFURRl165dCqD8+c9/drn//vvvVwBl7dq1jtsuuugiBVA+/fRTx20ff/yxAihJSUnKd99957j9lVdeUQBl3bp1jtv69++vdOnSRamoqHAZx+9+9zulXbt2Pq/D2bNnlQ4dOiiActFFFym333678tprrynHjh2rdaz9+tx7770u5xkyZIhSr1495ccff1QURVE2bdqkAMrChQtdHr9y5cpat9tf+8aNGx23HT9+XKlfv74yefJkx21vv/12rdftz5IlSxRAKS4uVhRFUUpLS5XExERl1qxZLsetW7dOAZTLLrtMOXfunOP22bNnK4Dy5ZdfulwvdzNmzFBMJpPLz+nxxx9XnH+1nzx5UklMTFQeeughl8fed999SsOGDZWysjJFURRlwoQJSkpKilJVVeX1ddnHa78Wn332mQIob7/9tp8rIkRkycyOEFFk7NixLt/37t2b//3vf47v33nnHUwmU63ZDMCx3fjDDz8EID8/3+X+yZMnA/DBBx+43N6pUyeysrIc31955ZUA9OvXj9atW9e63T6eEydOsHbtWm688UZOnz7NTz/9xE8//cTPP//MwIEDKS4u5siRI15fa1JSEtu2beOBBx4A1CWjO++8kxYtWnDvvffWWnIDGD9+vMvrHT9+PL/++iurV68G1NmPxo0bc+211zrG89NPP5GZmUlycjLr1q2r9dp79+7t+L5Zs2Z06NDB5ZoHYuHChfTo0YNLL70UgEaNGjFkyBCPS1kAd9xxh0vSr31MzuNISkpy/PeZM2f46aef+N3vfoeiKB6XF+0aN27MsGHD+M9//uOYQauurmbx4sUMHz6chg0bAtCkSRPOnDnDqlWrNL/Oxo0bA/Dxxx9z9uxZzY8TItwk2BEiStjzb5xdcMEFLrkm33zzDRkZGaSmpnp9nu+++w6z2ez4oLVLT0+nSZMmfPfddy63Owc0cP4DrFWrVh5vt4/nwIEDKIrC1KlTadasmcuXPRg7fvy4z9fcuHFjnn32Wb799lu+/fZbXnvtNTp06MDLL7/MtGnTXI41m81cfPHFLre1b98ewLEtvLi4mFOnTpGWllZrTGVlZbXG4/7aofY11+vkyZN8+OGH9O3blwMHDji+srOz2bFjB/v376/1GPdxXHDBBQAu4zh06BC33347qampjpyuvn37AvjNj8nNzeXQoUNs2rQJgNWrV3Ps2DFuu+02xzHjxo2jffv2DB48mJYtW/KnP/2JlStX+nzetm3bkp+fzz/+8Q8uvPBCBg4cyJw5cyRfR0Qd2Y0lRJSwWCyGPp/WwnLezuvtdvvsgD135/7773dJcnXmHnD5ctFFF/GnP/2JESNGcPHFF7Nw4UKmT5+u+fH2MaWlpXmdQXEPJv29xkC8/fbbnDt3jueff57nn3++1v0LFy7kySef1DWO6upqrr32Wk6cOMFDDz1Ex44dadiwIUeOHOH22293yaPyZODAgTRv3px///vf9OnTh3//+9+kp6czYMAAxzFpaWns2rWLjz/+mI8++oiPPvqI119/ndzcXN544w2vz/38889z++23s3z5cj755BPuu+8+ZsyYwdatW2nZsqXPcQkRLhLsCBFDLrnkEj7++GNOnDjhdXbnoosuwmazUVxc7JJIe+zYMU6ePOlIDA6WfZYlISHB5UMzWBdccAGXXHJJrYRam83G//73P8dsDuCYJbHXv7nkkktYvXo12dnZLss+wdBbjXjhwoV07tzZ41LjK6+8wptvvlkr2PHnyy+/ZP/+/bzxxhsuCclal5wsFgu33HIL8+fP55lnnmHZsmXcddddtYKsevXqMXToUIYOHYrNZmPcuHG88sorTJ061Wfg2qVLF7p06cKjjz7Kp59+SnZ2NvPmzdMdrAoRKrKMJUQMGTlyJIqiePywtM8CXH/99QC88MILLvfPnDkTgCFDhhgylrS0NK6++mpeeeUVfvjhh1r3//jjjz4f//nnn/PTTz/Vuv27777j66+/pkOHDrXue/nllx3/rSgKL7/8MgkJCfTv3x+AG2+8kerq6lpLYKBuxw9kh5A9p0XLY7///ns2btzIjTfeyB/+8IdaX3fccQcHDhxg27ZtusZgD0qcZ5wURXHZFu7Pbbfdxi+//MJf/vIXysrKHLuw7H7++WeX781mM5dffjmAx/wpgNLSUqqqqlxu69KlC2az2etjhIgEmdkRIoZcc8013Hbbbbz44osUFxczaNAgbDYbmzZt4pprrmH8+PF07dqVMWPG8Pe//52TJ0/St29f/vvf//LGG28wfPhwrrnmGsPGM2fOHHr16kWXLl246667uPjiizl27Bhbtmzh8OHDfP75514fu2rVKh5//HF+//vfc9VVVznq6Pzzn//k3LlzPPHEEy7HJyYmsnLlSsaMGcOVV17JRx99xAcffMAjjzziWJ7q27cvf/nLX5gxYwa7du3iuuuuIyEhgeLiYt5++21mz57NH/7wB12v8YorrsBisfDMM89w6tQp6tevT79+/UhLS6t17JtvvomiKPz+97/3+FzXX389VquVhQsXOhK+tejYsSOXXHIJ999/P0eOHCElJYV33nlHV25Rt27d6Ny5M2+//TaXXXYZ3bt3d7n/z3/+MydOnKBfv360bNmS7777jpdeeokrrrjC61b7tWvXMn78eP74xz/Svn17qqqq+Ne//oXFYmHkyJGaxyZEqEmwI0SMef3117n88st57bXXeOCBB2jcuDE9evTgd7/7neOYf/zjH1x88cXMnz+fpUuXkp6ezpQpUzwurQSjU6dO7NixgyeffJL58+fz888/k5aWRrdu3Xjsscd8PnbkyJGcPn2aTz75hLVr13LixAkuuOACfvvb3zJ58uRaQZnFYmHlypXcc889PPDAAzRq1IjHH3+81nnmzZtHZmYmr7zyCo888ghWq5U2bdpw6623eixg6E96ejrz5s1jxowZ3HnnnVRXV7Nu3TqPwc7ChQtp3bq11yJ+TZo0oVevXixevNgx06ZFQkICK1ascOTDJCYmMmLECEdwq1Vubi4PPvigS2Ky3a233srf//535s6dy8mTJ0lPT+emm27iiSeewGz2vAjQtWtXBg4cyIoVKzhy5AgNGjSga9eufPTRR1x11VWaxyVEqJmUYDLxhBAiDG6//XaWLFlCWVlZpIcS02bPns2kSZP49ttvPe5EEyJeSc6OEELUAYqi8Nprr9G3b18JdESdI8tYQggRx86cOcN7773HunXr+PLLL1m+fHmkhyRE2EmwI4QQcezHH3/klltuoUmTJjzyyCNek6eFiGeSsyOEEEKIuCY5O0IIIYSIaxLsCCGEECKuSc4Oahn6o0eP0qhRI92l4YUQQggRGYqicPr0aTIyMrzWgwIJdgA4evRorQ7PQgghhIgN33//vc/GsxLsAI0aNQLUi5WSkhLh0QghhBBCi9LSUlq1auX4HPdGgh3OdzVOSUmRYEcIIYSIMf5SUCRBWQghhBBxTYIdIYQQQsQ1CXaEEEIIEdckZ0cIIURcqq6uprKyMtLDEEFISEjAYrEE/TwS7AghhIgriqJQUlLCyZMnIz0UYYAmTZqQnp4eVB08CXaEEELEFXugk5aWRoMGDaRYbIxSFIWzZ89y/PhxAFq0aBHwc0mwI4QQIm5UV1c7Ap2mTZtGejgiSElJSQAcP36ctLS0gJe0JEFZCCFE3LDn6DRo0CDCIxFGsf8sg8m/kmBHiCCUV5ZzrOwY5ZXlkR6KEMKJLF3FDyN+lhLsCBGAwkOF5CzOIXlGMunPp5M8I5mcxTlsPrQ50kMTQgjhRoIdIXQq2F5An9f7sGL/CmyKDQCbYmPF/hX0fr0383bMi/AIhRBCOJNgRwgdCg8VkvdhHgoKVbYql/uqbFUoKIz7YJzM8AgRJ6oqKij/6SeqKipCfq6NGzcydOhQMjIyMJlMLFu2LOTnrCsk2BFCh5lbZmIx+94NYDFbmLV1VphGJIQIheNFRWycMIG3evZkad++vNWzJxsnTODHnTtDds4zZ87QtWtX5syZE7Jz1FWy9VwIjcory1m+b7lj6cqbKlsVS/cupbyynKSEpDCNTghhlOJFi9g+fTomsxlsNf+/22wcWbeOw2vW0HPqVNrddJPh5x08eDCDBw82/HmFzOwIoVnpuVK/gY6dTbFReq40xCMSQhjteFER26dPB0VBqa52uU+prgZFYfu0aSGd4RHGi2iwM2PGDHr27EmjRo1IS0tj+PDh7Nu3z+WYiooK8vLyaNq0KcnJyYwcOZJjx465HHPo0CGGDBlCgwYNSEtL44EHHqCqyjWfQohgpdRPwWzS9r+M2WQmpX5KiEckhDDa3gUL1BkdH0xmM3sXLAjTiIQRIhrsbNiwgby8PLZu3cqqVauorKzkuuuu48yZM45jJk2axIoVK3j77bfZsGEDR48eJScnx3F/dXU1Q4YM4ddff+XTTz/ljTfeYP78+Tz22GOReEkijiUlJDGswzCsZt+rv1azlREdR8gSlhAxpqqigsNr19aa0XGnVFfz/Zo1YUlaFsaIaM7OypUrXb6fP38+aWlpFBUV0adPH06dOsVrr73Gm2++Sb9+/QB4/fXXueyyy9i6dStXXXUVn3zyCV9//TWrV6+mefPmXHHFFUybNo2HHnqIJ554gnr16kXipYk4lZ+Vz7K9y3weU22rZtJVk8IzICGEYSrLys7n6Phjs1FZVoY1MTG0gxKGiKqcnVOnTgGQmpoKQFFREZWVlQwYMMBxTMeOHWndujVbtmwBYMuWLXTp0oXmzZs7jhk4cCClpaXs3r3b43nOnTtHaWmpy5cQWvRq3Yu5Q+ZiwlRrhsdqtmLCxNwhc8lunR2hEQohApWQnAx+lrAczGb1eBEToibYsdlsTJw4kezsbDp37gyonWvr1atHkyZNXI5t3rw5JSUljmOcAx37/fb7PJkxYwaNGzd2fLVq1crgVyPi2dgeY9l0xyaGdRjmyOExm8wM6zCMTXdsYmyPsREeoRAiENbERFr264fJT7NJk8VCq/79DZ/VKSsrY9euXezatQuAgwcPsmvXLg4dOmToeeqiqNl6npeXx1dffUVhYWHIzzVlyhTy8/Md35eWlkrAI3TJbp1NdutsyivLKT1XSkr9FMnRESIOdMzN5fCaNT6PUWw2OubmGn7uHTt2cM011zi+t39OjRkzhvnz5xt+vrokKoKd8ePH8/7777Nx40ZatmzpuD09PZ1ff/2VkydPuszuHDt2jPT0dMcx//3vf12ez75by36Mu/r161O/fn2DX4Woi5ISkiTIESKOpGVm0nPqVLZPm4bJbHZJVjZZLCg2Gz2nTqVZ9+6Gn/vqq69GURTDn1dEeBlLURTGjx/P0qVLWbt2LW3btnW5PzMzk4SEBNY4Rdn79u3j0KFDZGVlAZCVlcWXX37J8ePHHcesWrWKlJQUOnXqFJ4XIoQQIm60u+kmrl2wgJb9+p3P4TGbadmvH9cuWBCSgoIitCI6s5OXl8ebb77J8uXLadSokSPHpnHjxiQlJdG4cWPuvPNO8vPzSU1NJSUlhXvvvZesrCyuuuoqAK677jo6derEbbfdxrPPPktJSQmPPvooeXl5MnsjhBAiIM26d6dZ9+5UVVRQWVZGQnKy7LyKYRENdgoKCgB16s7Z66+/zu233w7ArFmzMJvNjBw5knPnzjFw4EDmzp3rONZisfD+++9zzz33kJWVRcOGDRkzZgxPPfVUuF6GEEKIOGVNTJQgJw6YFFkgpLS0lMaNG3Pq1ClSUqTqrRBCxKqKigoOHjxI27ZtSZQgJS74+plq/fyOmq3nQggRzcqBYzX/CiFiiwQ7QgjhQyGQAyQD6TX/5gCbIzkoIYQuEuwIIbwqryznWNkxyivr5nxGAdAHWAHYmwjYar7vDcyL0LiEEPpIsCOEqKXwUCE5i3NInpFM+vPpJM9IJmdxDpsP1Z35jEIgD1CAKrf7qmpuH4fM8AgRCyTYEUK4KNheQJ/X+7Bi/wpsijqfYVNsrNi/gt6v92bejroxnzET8N00QL1/VhjGIoQIjgQ7QgiHwkOF5H2Yh4JClc11PqPKVoWCwrgPxsX9DE85sJzaMzruqoClSNKyENFOgh0hhMPMLTOxmH3PZ1jMFmZtje/5jFLO5+j4Y6s5XsSn8nI4dkz9N9RmzJhBz549adSoEWlpaQwfPpx9+/aF/sR1gAQ7QghATUZevm95rRkdd1W2KpbuXRrXScspaP/laK45XsSXwkLIyYHkZEhPV//NyYHNIZzU3LBhA3l5eWzdupVVq1ZRWVnJddddx5kzZ0J30joiKhqBChHPYqUzeum5UkeOjj82xUbpudKofj3BSAKGoe668hX6WWuOi8+rUHcVFEBeHlgsYKv5X8JmgxUrYNkymDsXxo41/rwrV650+X7+/PmkpaVRVFREnz59jD9hHSIzO0KESKztaEqpn4LZpO1XgtlkJqV+fM9n5APVfo6pBiaFYSwifAoL1UBHUaDKLdKtqlJvHzcutDM8dqdOnQIgNTU19CeLcxLsCBECsbijKSkhiWEdhmE1+57wtZqtjOg4Im5ndex6AXMBE7WnwK01t88FssM8LhFaM2eqMzq+WCwwK8RpazabjYkTJ5KdnU3nzp1De7I6QIIdIQwWyzua8rPyqbb5ns+otlUz6aq6MZ8xFtiEulRl/2Vprvl+U839In6Ul8Py5bVndNxVVcHSpaFNWs7Ly+Orr75i0aJFoTtJHSLBjhAGi+UdTb1a92LukLmYMNWa4bGarZgwMXfIXLJb1535jGxgCVAGlNT8uwSZ0YlHpaXnc3T8sdnU40Nh/PjxvP/++6xbt46WLVuG5iR1jAQ7Iq5Eur1BPOxoGttjLJvu2MSwDsMcOTxmk5lhHYax6Y5NjO1RN+czkoDmSDJyPEtJAbPGT0WzWT3eSIqiMH78eJYuXcratWtp27atsSeow2Q3logLhYcKmbllJsv3Lcem2BwfzpOzJod1FiJedjRlt84mu3V2zOwkE8IISUkwbJi668rXUpbVqh6XZPD/Enl5ebz55pssX76cRo0aUVJSAkDjxo1JMvpkdYzM7IiYF03JwPG2oykpIYnmyc0l0BF1Rn4+VPvZhlddDZNCkLZWUFDAqVOnuPrqq2nRooXja/HixcafrI6RYEfEtGhLBpYdTULEtl691Do6JpM6g+PMalVvnzsXskMwYawoisev22+/3fiT1TES7IiYFo3JwLKjSYjYNnYsbNqkLlXZc3jMZvX7TZtCU1BQhJbk7IiYZU8G9pcj45wMHI6ZFPuOpnEfjMNitrjMOFnNVqpt1Zp2NEm+jBCRk52tfpWXq7uuUlKMz9ER4SMzOyJmBZIMHC7B7GiKtcrLQsSzpCRo3lwCnVgnMzsiZtmTgbUEPJFIBg5kR1PB9gLyPszDYrbUSrZetncZc4fMjZmt3+Wo3cBTkO3aQojIkpkdEbNiJRlY646maEu2DlQhkAMkA+k1/+YA0T1qIUQ8k2BHxLR4SgaOxmRrvQqAPqjdwu3zbbaa73sD0dcRTAhRF0iwI2JavLQ30FN5+d0973Li7IkwjUy7QiAPUAD3V1FVc/s49M/wlAPHav4VQohASLAjYl48tDfQk2ytoNDsb82iLml5JuCnWTQWQOu8lCyHCSGMYlIURYn0ICKttLSUxo0bc+rUKVKMbnYiwipWt2uXV5aTPCNZc8ADrtvYIx3QlaMGI1pGb0Ztpunrp1OAOktkwXWWyApUA3ORjuPCs4qKCg4ePEjbtm1JTEyM9HCEAXz9TLV+fsvMjogrsdreQGuytbNoSlouRVugQ81xvooAhGo5TAhRd0mwI0SU0JJs7Uk0JC2noP2XibnmeG/+T8Nz6FkOEyIY5ZXlHCs7Rnll6LPGCgoKuPzyy0lJSSElJYWsrCw++uijkJ+3LpBgRwgDGPEL0VeytS/OFaIjJQkYhv/CXVZgBN6XsGYDG1Fnb3ypApYiScsidCJR3LNly5Y8/fTTFBUVsWPHDvr168ewYcPYvXt3yM5ZV0iwI0QQjP6F6JxsbcKk+XHhrhDtST5qPo0v1YC3IgCFwEQd5/O3HCZEoAq2F9Dn9T6s2L+iVnHP3q/3Zt6O0BRRGDp0KNdffz3t2rWjffv2/PWvfyU5OZmtW7eG5Hx1iQQ7QgQoVL8Qs1tns+TGJfz0wE+O3WX+RKJCtLteqInDJmrP8Fhrbp8LeCsCoGU3lzN/y2FCBCJaintWV1ezaNEizpw5Q1ZWVkjPVRdIsCNEAMLxCzG1QWpMVIh2NhbYhLqkZf/lYq75fhPed1CVA8vxPzNk5285TIhARbq455dffklycjL169dn7NixLF26lE6dOoXkXHWJBDtCBCBcvxBjsUJ0NrAEdXt5Sc2/S/A+owP6dnOB7+UwIQKlp7hnqPLkOnTowK5du9i2bRv33HMPY8aM4euvvzb8PHWNBDvCq3DuQghUJMYYzl+IRlWIjsR1SgKao232Rc9uLoAX8B082Un1Zf3Ky+HYMfXfukZPcc9Q5cnVq1ePSy+9lMzMTGbMmEHXrl2ZPXu24eepayTYEbVEYheCXpEcY7h/IQZTIToWfpagfTcXQF/gPj/HSPVl/QoLIScHkpMhPV39NycHNtehi5ZSPyXq8uRsNhvnzp0L+XninVRQRiooOyvYXkDeh3lYzBaXmYtoqtYb6THqqXZsNpkpm1JmWD6NngrRkb5OehWiNhH19QvJhJr742tWR6ov61dQAHl5YLFAldNFs1qhuhrmzoWxMXLRgq2gnLM4hxX7V/icubWarQzrMIwlNy4JZqi1TJkyhcGDB9O6dWtOnz7Nm2++yTPPPMPHH3/Mtddea+i5YolUUBaGipZdCL5Ewxi1VjsOReKwvUI04HNZKhquk17B7uaC+K2+HMqlpcJCNdBRFNdAB9TvFQXGjas7MzyRzJM7fvw4ubm5dOjQgf79+7N9+/Y6H+gYRYId4RDpXQhaRMsYI/ULUeuyVLRcJ70C3c1lZ3Qz0kgLx9LSzJnqjI4vFgvMipWLFiSj8uQC8dprr/Htt99y7tw5jh8/zurVqyXQMYgsYyHLWBDZpRmtom2M83bMY9wH48K2TKR1WUrvdfrm3m8C7idWjrqTKgXjt4HrfW6jm5FGWjiWlsrL1QDKpuGimc1QVgZJ0XzRMK4R6OZDm5m1dRZL9y7Fptgwm8yM6DiCSVdNCkmgI7wzYhlLe016EdcCSboNd7ATbWMc22MsXdK61PqFOKzDMMN/IfpblgIY98E4uqR14dLUS3Vdp7YvtnWMe3LWZE3jLkSdRVmOGlzYZ18mo22XlBZJ6AtGAmlGGq2f2/6WlkBdWurSBbKDuOClpdoCHVCPKy2N/mDHKNmts8luna0rT05Er4guY23cuJGhQ4eSkZGByWRi2bJlLveXlZUxfvx4WrZsSVJSEp06dWLePNeqtBUVFeTl5dG0aVOSk5MZOXIkx44dC+OriA/RuAvBXTSO0V7tuGxKGSWTSyibUsaSG5cY/pefnmUpPdfJTk/l5wLUROIVnA8ubDXf9wZCU0jfPyObkUZauJaWUlLUGRstzGb1+LrGnicngU5si2iwc+bMGbp27cqcOXM83p+fn8/KlSv597//zZ49e5g4cSLjx4/nvffecxwzadIkVqxYwdtvv82GDRs4evQoOTk54XoJcSOSSbdahXKM3urQaK1PE8pfiHrr+gCarpOnx/tLXNaTAOypxk0o694Y1Yw00srLYfny2jM67qqqYOnS4JKWk5Jg2DB1acwXqxVGjKg7szoi/kQ02Bk8eDDTp09nxIgRHu//9NNPGTNmDFdffTVt2rTh7rvvpmvXrvz3v/8F4NSpU7z22mvMnDmTfv36kZmZyeuvv86nn34qjdMCEAvVeo0eo7eE37nb50ZNfZpAlu+0XCdvfCUua0kANgM34lrjpg9qfZxQ170JthlpNAhkaSkY+flqDpAv1dUwKZovmhB+RPVurN/97ne89957HDlyBEVRWLduHfv37+e6664DoKioiMrKSgYMGOB4TMeOHWndujVbtmzx+rznzp2jtLTU5UtEdheCVkaO0Vsjz+X7lpP3YR7L9y0Pa8djbwJZvvN1nfzxVvnZ3r/Kz4QD1cBRXJe4NgEbCf2ylxHb1yPBeWt5uJeWevVSk51NptozPFarevvcucHlBgkRaVEd7Lz00kt06tSJli1bUq9ePQYNGsScOXPo06cPACUlJdSrV48mTZq4PK558+aUlJR4fd4ZM2bQuHFjx1erVq1C+TJiSjDVesPFiDH6Svh1DnCcRao+jdblO1DHPPrd0Ww+tNlxnbJb6f+U8lT5WW//Kn9CVfcm2O3r4eRpa/no0WoAEs6lpbFjYdMmdUnLHmiZzer3mzbFTkFBIbyJ6t1YL730Elu3buW9997joosuYuPGjeTl5ZGRkeEym6PXlClTyM/Pd3xfWloqAY+TWNiFEOwY7Qm//vJgPDGZTMzaOiusM1z5Wfks27tM07Er9q9g2d5ljq3oqUmpWEwWqhV9y1qLdy/mvivPN2ZYpOvR2tnr3hh5NbNrvkK5NT5YzlvL7ctWNhusWOE/XweMX1rKzla/ysvVpbGUFMnREfEjaoOd8vJyHnnkEZYuXcqQIUMAuPzyy9m1axd/+9vfGDBgAOnp6fz666+cPHnSZXbn2LFjpKene33u+vXrU79+/VC/hJiXlJAUdUGOu0DGaE/41ZoH486m2BzLPOG6PvZlKU91fdw5b0Vvn9o+4Nc6ceVEMltkkt06m0JCl+dSBSxFDUyMvpp6t6+Hi5at5XZWq/c6O6FYWkpKkiBHxJ+oXcaqrKyksrISs9vitcViwVbzZ1BmZiYJCQmsWbPGcf++ffs4dOgQWVlZYR2viB16En69CVXHY1+cl++0sJgtzNw6M+DX6pyorCUxORj2ujd1hZat5VYr9O0rS0tCGCGiMztlZWUcOHDA8f3BgwfZtWsXqamptG7dmr59+/LAAw+QlJTERRddxIYNG1iwYAEzZ84EoHHjxtx5553k5+eTmppKSkoK9957L1lZWVx11VWRelkiytkTfoMNeBLMCQaNSLvs1tl0b9Gdd/e8i+KzZaY6w/PRgY8wYfJ7rLfHL927lBOV5SxPSDI0X8ddtNe9MZJ9a7m/HVdVVWpQU1amfi9LS5ERyaXQp59+milTpjBhwgReeOGFMJ89vkR0ZmfHjh1069aNbt26AWpdnW7duvHYY48BsGjRInr27Mno0aPp1KkTTz/9NH/9618Z6/QnzaxZs7jhhhsYOXIkffr0IT09nXfffTcir0fEBj0Jv75U2ioNGpE+pedKNQcvNsXGoEsHBfxabYqNo7+WhTTQifa6N0YLtGpx8+YS6IRTIWp5hFCXS/Bm+/btvPLKK1x++eVhOmN8i+jMztVXX42v1lzp6em8/vrrPp8jMTGROXPmeC1MKIQnehJ+PTFhikgVadA3M2U2mZmcNZmVB1YGdC6zyUxGvWTMGLsTy1m0170xmn1rudZ+VHWxanGkFaAWz7RQu1zCMtTyBaFcRSwrK2P06NG8+uqrTJ8+PYRnqjuiNmdH+Ke1uq+ozZ7wGwizyUzOZTkRS97WW0m6/8X9A6q5Y398akKS5srE3fBc48bb8SbgBaKv7k0oSdXi6KanSnio5OXlMWTIkKB2HQtXEuzEIG9VfyNR3TeWje0xlvdGvef/QDeKokS0ijToryTtnNxswqTpHM6P11qZ+CU817jpW/Pl/AvH/sExifAuD0QDqVocvbQk49vLJYTCokWL2LlzJzNmzAjRGeomCXZijLeqv5Gq7hvrBlw8QHfTzEhXkYbAKklnt86mf9v+AFhM3n+de3q8nsrE2cASoAwoqfl3fc3XzJrHOJ89GpqIhptULY5OWquEO5dLMNL333/PhAkTWLhwIYmJiQY/e90mwU4M8VX1N1LVff0J1VJbsM9rfzxob5qZ0SiDwjsKo6KKNOivJO38/vFVYDC7VbbHx+utTJwENOd84rFzrR73s4dreSAQoWpeKlWLo4+eKuGhKJdQVFTE8ePH6d69O1arFavVyoYNG3jxxRexWq1U+5sOFF5FbVFBUZuWqr/22iiRnnkoPFTIzC0zHQXt7B/Ck7MmBzW2YJ/X0+OzW2X7raRswsRbf3gr4tfVnZ5K0lqrRhefKPZ+PgKvTGxfHvB19lBUUw5UIeqYl6N+sNkDu8kYNz6pWhxdUkBzMn4oyiX079+fL7/80uW2O+64g44dO/LQQw9h8VecSXhlUnxth6ojSktLady4MadOnSLFwK0PRrZbKK8sJ3lGsuYdOGVTyiKWQFuwvYC8D/NqfbBazVaqbdWONgbuTpw9wdHTR8lolEFqg1TDnlfL4+3fO/+3nuf2JpQtN/Q8t573D+BYxtLymrUEPuWoW3e1foiUeXmucNU8cd6N4xycWVFnpUKxG0cCHmNUVFRw8OBB2rZtG9BSUA7qsqqvoNyKGvguCWyIulx99dVcccUVdbrOjq+fqdbPb1nGCoFQJBDrqfobieq+doEstc3dPpeM5zNo+lxTuszrQtPnmpLxfAYF2wuCel4947LLbpVtSAPUUCaRB/LceqtGa1kS1VOHJNjlgXDWPAn3bhxPzUBzcmBztK3n1RFak/Eldzy2SLBjsFAlENtrq2hhNpkjVgPGvlTii3MbgpuX3Ezeh3n8UPaDyzE/lP3AuA/Hccs7twT0vIGMy2q2cmGDCymbUkbJ5BLKppSx5MYlupeuQplEHuhz63n/2Pm6ngVAH9S/gN3rkHhKNLYvD2jhvjyg91zBCudunIIC6NNHbf7p3gy0d2+YV1cytqOInmT8cFi/fn2dntUxigQ7BgplArHe2iqRWMKyN9j0lxNib0PwwtYXWLTbdy/t/3z1H17c+qKu53VPWtY7LoDmyc01XcMTZ0/w1bGvOHH2BBDa90Awzx1I1Whv1zOQmY8k4Ab8BxHu1ZT1nCvQRGLnx4VzN46/ZqCKAuPGRdcMT3k5HDum/htLz62X3mR8Ef0k2DFQsLMP/uitrRJuepfani58WtOxMwpnBLWEF4olQG9Lb/d+eG/I3gPBvr+0vH/ceboeemc+7EtQK9C/PKDlXGbgRvQvcXlaGhtJ+HbjaGkGarHArFAVdNEhlEtt0bqM56mEwhKiI3le6CfBjkH0zh4EsmU6kNoq4aR3qeTYmWOajis5U6L5OT0t4Rm9BOhr6W3XsV0heQ8Y8f4KpGq0KaEB5fVTHDMYemc+ZnN+CcrXTghPywNaz1UNHEXfEpe3pbFP/JzLWTC7cezNQN1ndNxVVcHSpZGd7QjlUlssLOO5l1AQsUmCHYOEK4FYb22VcNKz1Dagrb4y6P3a9At4Cc/IJcC52+f6XXrTQu97wKj319geYym8o5CMRhm+n6RVNtz4LsqU07RNSHLMlqxG38zHRDwvQTnztjygJ6nZna9EYl9LY1rnvYJtXhpIM9BICOVSWywu44nYJcGOQcKZQJzdOpslNy4JOpE2FLQuteVfla/reSdnTQ5qCc+oJcDpG41pyqf3PWDk+yu7dTaL/7DYe9uIHmPhjo3Q/gaoOad9tmQYaGw2ofJ3rAX4PZ6XB/QkNft6fvdVIC1LY/4EuxvH3gxUq8WLgzhZEEK51BZLy3gi9kmwY5BIJBAnJSRpTqQNF61LbYPbD6ZFcgtNz5nRKIPr218f1BKeEUuAJ86eqLV0FQj394C/atD2ejo3tLvBsPeX1+vRKhuun6MGOZYEl8fYZ0sUtAcL/op4VQPv4TnRNwk0NSD1xT2RWOvSmJ1Ru3Hck2+1NgO1mzgR1q71nMAbqsTeUC61xdIynogPEuwYKNoTiMNF61Lbo30e1fR8j/Z+VNfzBjsub46ePqppvP7Y3wP+6uW4379i/wq/OTt63l+ergdZ+Zj8LJdZ0L7co4WvRF8tNU/0PL/epbGBBLcbx1fyrZZmoM7693d9jrlzQ5vYG8qltlhZxhPxQyooY2wF5Xk75jHug3EBV/mNN/6q/N7yzi3856v/eH38zZ1v5s2Rb+p+3mDH5cmJsydo+lxTzeewmCwuPaic3wOKovisBn3Tb25i8e7Fte43m8yONhfOOTxGVHo+dq6USxqmYTP5X6gy4X/WRitfFZNBTTIeV3NcIIGP8/MHUskZAqvaXFCg5qRYLK4zGFarGuTMnQu//goTJuh4UvvYzGoQYP/X03MH21urvFwNoLQEJWYzlJVpr/wcyucOtoKyiD5GVFCW3lgGG9tjLF3SujBr6yyW7l3q0r9p0lWToiKvJpySEpJ8BhNvjnyT3q17M33TdJeZk4xGGTza+1Hu6XlPQM8b6Lh8BUGpDVJpkdxC01JW06SmXN3mao/vAQWFPq/38VnN2Z4E7X6/cyFBEyYUFMwmMze0u4E/dfsTAy7Wl/htZ78eWmc9jAp07GX3ff0kxwJdgBnAB0E+v31pTGs7AOfH6eEv+RbU5Nvly3U+cQ3nnUvenrtLl+C6ptuX2las8L3cZLWqx4G6nKal3YXe5w5L+4ziYjh9Wv/jGjWCdu2MH48wlMzsEBu9seoCf72xQklrg9G52+eS92Ge3+ebe/1c7ul5j8f3QM7iHE1LUlqlN0zn+NnjQTdc1TvrYc/fCYYJdVlIy0j1jM/ZXMA5ZC5E3Xbua+x6xuVJTo62D/IbboD33tO+pKOVPUhYEmTzpsJCdWu4v0+JPn3UY+2zTcOGweTJvoMtLc9tMqkd4PUEbQHN7BQXQ/v22k/ibv/+Oh3wrF+/nmuuuYZffvmFJk2aeDxm/vz5TJw4kZMnT+p+fumNFeWiMYE4mqU2SKVz885hD3T8tWB4cduLjmPH9RzHzZ1v9vl8f+z0R3Iuy6G8srzWe6C8spxle5cZFuiAWofI27h9JT67s896+PulYEbddj0c/1PD9ucyItE3kIRlM+o2c+dyLaFuB6An+fa999SAR2uislZGJfb26qUuiZlMtcfo/P2nn+qvk+PvuU0m9f5gZqc0C2RGx8jHuykpKeHee+/l4osvpn79+rRq1YqhQ4eyZs0aw85x9dVXM3HiREOe63e/+x0//PADjRs3NuT5QkGCHVGnaWnBMGHlBPq+3teROPzmyDeZe/1cl1o1l/4M/U404aZz7fjfmiUMnpxO73sbcv/T/dj1wT9h504+++A1HnrmWq44qtDtKHQ7qj7OaM7j1tuEdAD+Z05sQH+0JQ8rqIGDUWX39SYs2/BcbyeU7QD0Jt/eeae+RGWtjErsHTtWnV0ZNuz8dnmz2TUICbROjrfnHjZMvT3YvKNY9O2335KZmcnatWt57rnn+PLLL1m5ciXXXHMNeXn+Z5WNpCgKVf6idqBevXqkp6dj0pDvFykS7Ig6TUsLBoCNhza6NNq8p+c9HMk/ws8P/My+696n+CVY8+JJFs0oZscrCjv/DjteUfjblHVcccOdkJlJtxv+zItTN7Pz7zi+il8KTcDjTE8T0tVom9lZg/YZknswruy+r3P64qneTqjaAeipoWM2w7XXep/hCIbZrI7FCNnZ6pJYWRmUlKj/pqb6H6+WOjmennvJkjDN6EShcePGYTKZ+O9//8vIkSNp3749v/nNb8jPz2fr1q0AnDx5kj//+c80a9aMlJQU+vXrx+eff+54jieeeIIrrriCf/3rX7Rp04bGjRszatQoTtfMQN1+++1s2LCB2bNnYzKZMJlMfPvtt6xfvx6TycRHH31EZmYm9evXp7CwkHPnznHfffeRlpZGYmIivXr1Yvv27Y7z2R/nvEQ1f/58WrduTYMGDRgxYgQ//+z6i+7zzz/nmmuuoVGjRqSkpJCZmcmOHTtCdl0l2BF1ltYWDHaeGm2mNkjlzAnt7Sw8aXQuqIdroqUJqb0GjZaZHXvtGj0zJEaV3Xc+p9a/I3017jS6HYDWGjpWK4wYoR7vaYYjGM7PbaSkJGjeXP1vo+vk2J87LMnIUerEiROsXLmSvLw8GjZsWOt+ez7MH//4R44fP85HH31EUVER3bt3p3///pw4ccJx7DfffMOyZct4//33ef/999mwYQNPP632I5w9ezZZWVncdddd/PDDD/zwww+0atXK8diHH36Yp59+mj179nD55Zfz4IMP8s477/DGG2+wc+dOLr30UgYOHOhyPmfbtm3jzjvvZPz48ezatYtrrrmG6dNdC7KOHj2ali1bsn37doqKinj44YdJSEjw+HxGkGBH1Fl6WjDYeWq0ufDLhUYOK6R8NQrVU4PGuXZNJBom2s/5lo7HBNu4Uw8tNXSqq2GSU0kk9xmO1avV2Z5AuD+30aROTmgcOHAARVHo2LGj12MKCwv573//y9tvv02PHj1o164df/vb32jSpAlLnDLSbTYb8+fPp3PnzvTu3ZvbbrvNkfPTuHFj6tWrR4MGDUhPTyc9PR2LUznrp556imuvvZZLLrmE+vXrU1BQwHPPPcfgwYPp1KkTr776KklJSbz22msexzh79mwGDRrEgw8+SPv27bnvvvsYOHCgyzGHDh1iwIABdOzYkXbt2vHHP/6Rrl27BnP5fJJgR9RZehuXQu1Gm+WV5az/dn0IRqfyVzFZL1+NQvW0Z7A3wSwHjtX8G+6GiQXAH3Uc72nMoRJM8q19hqN/f+/P4Zzfoue5jaJ3qU7vclqoqkJHOy2boz///HPKyspo2rQpycnJjq+DBw/yzTffOI5r06YNjRo1cnzfokULjh8/rmkcPXr0cPz3N998Q2VlJdlOb6iEhAR++9vfsmfPHo+P37NnD1deeaXLbVlZWS7f5+fn8+c//5kBAwbw9NNPu4w9FCTYEXWW1hYf7pwbbaqzQ6Gp3vDeqPdcqxsbxFujUK27nayoHcVHo24FT6/5N4faTTdDxd7MU6tIjNmI5FtvzzFihBrQjBgRmcTeQJbqtPBVcbouaNeuHSaTib1793o9pqysjBYtWrBr1y6Xr3379vHAAw84jnNfEjKZTNg0Tsd5WkIz2hNPPMHu3bsZMmQIa9eupVOnTixdujRk55NgR9RpWlp8uHNutKnODhm/A8FsMjPg4gGOhq/Lb1ruvXFnAM/trVGolt1OVcAG1MJ89l+d9kahvXHd5h0qept5RmrMRiTfenuOe+6JbGJvIEt1vhQUqHV3VqzQv409XqSmpjJw4EDmzJnDmTNnat1/8uRJunfvTklJCVarlUsvvdTl68ILL9R8rnr16lGtYRvgJZdcQr169djsFHFWVlayfft2OnXq5PExl112Gdu2bXO5zZ5c7ax9+/ZMmjSJTz75hJycHF5//XXN49dLgh1Rpzk3xNQSTLg32kxKSOLqNlcbOiZP5/h9x997bWSq97kHXzrY6/3+dlg5c89NtTcKdd/mbTS9zTydRWrMRiTfenuOSCX2Glknx1/FaS3b2OPFnDlzqK6u5re//S3vvPMOxcXF7NmzhxdffJGsrCwGDBhAVlYWw4cP55NPPuHbb7/l008/5f/+7/907WZq06YN27Zt49tvv+Wnn37yOuvTsGFD7rnnHh544AFWrlzJ119/zV133cXZs2e58847PT7mvvvuY+XKlfztb3+juLiYl19+mZUrVzruLy8vZ/z48axfv57vvvuOzZs3s337di677DJ9F0sHCXZEnWdviNnnoj5+j/XUaHN0l9GGjsdbM09PjTtNmMholKF5qavKVsUHxR/4rL3ja4dVH/wvc3na5m0kvc08ryLyY45XRtXJmTlT3abui5Zt7PHg4osvZufOnVxzzTVMnjyZzp07c+2117JmzRoKCgowmUx8+OGH9OnThzvuuIP27dszatQovvvuO5rbt8ppcP/992OxWOjUqRPNmjXj0KFDXo99+umnGTlyJLfddhvdu3fnwIEDfPzxx1xwwQUej7/qqqt49dVXmT17Nl27duWTTz7h0UfPN362WCz8/PPP5Obm0r59e2688UYGDx7Mk08+qf1C6STtIghduwgRe17c9iITVk7w2cSzVqPNnTshMzPgc3a/Gz7LUJeXFEXx2szTufUE4NKGYvbW2Uz6eJK6Lq9xh5mW5qHlnG+CCfqbaIZiskFP2whTzVekx1wXlJeru6609MZyf5yRTUEDahcR5P/DFBVB9+6BP174JO0ihDDYfVfeR+EdhQzvONwxW2LvN7Xpjk0h7VhvU2zMuX5OrXMUHiokZ3EOyTOSHRWRR787mgMnDpCUkEThoUImfaw2GNWzlV5L7R3nHVaBbk03mp5E6uuJjjHXBYEup8k2dhEO0vVcCDfZrbPJbp0d9kauVrOVNQfXuHR6L9heQN6HeVjMllr9r5btXcbcIXP55JtPsJgtAffbMplMzNo6y2/jUPvWdK2zJKGcI80Hlvk5prrmuI+IjjELz+zb2LXO7MjkuwiEzOwI4aS8stzRPNNTI1fn+43mXgNHS9+uez64R1cVaE9sio1397zr9zXpmVEZge/loGBr3fhKpLanfrwA9MO4MUeTeKpDE6pt7HY2G1RW+gmmnOrRBCTYx4uQk5kdIVADi5lbZrJ833Jsis2xdDU5azLZrbN932/gR6S9Bk5SQpKjb5evQMY9tyhQCorjvL5onVHxttu4EHXbuL0thT3xeTL6Ky6PBbqgJhYv5fzsjf1qTALWozY3DWbM0aSwUE3mXb5c/fC2JwNPnhzbvaTy82HZMt/H6K0KfeYMHD4MTu2aaNLkfP0eF+3awf79gXUvb9RIfbyIapKgjCQo13XOS0XOgYU9gfemzjex+KvFXu9/65KH+cNtMwI+vz1BGdT8oLIpZQAkz0jW3c4iGD8/8DOpDVL9HjcPdau2Bdet3FbUoGEunruGF6AWAtT7OC1mowYr3p57FLAoROcOl4ICdXu2xeK6PdtqVQOBuXNju0v4vHnq9vJgX19FRQVffHEQs7kNJlMSzp9wJpO6jb11a0hLM/41iNAoLy/n22+/lQRlEX9CuVzkfI739r3HuA/H+VwqWvTVIp/3T/lv4IEOwOn66r/O9XX09u2ymPSU2PNs8/faipiMRe2OPpDzjTi9Nf+0s1c8VjC+1k0haqDj67kXAXPQ1rDUG6PaTOhZgrIfu2aNGggEW4cmmpe/jNrGvmNHAj/8AHAW9z/l7d8fOqTu6hKx4ezZs0DtqtB6yDKWiCr+lpNCcY5gHWgK7e6FYRnXcLLiJF8c+4IqjVWZT9dXHw+u9XW8VTj2xojX8c/P/snQDkN9HuNpGWow6jJUPx+Ps1c89pVZZK91o/enrOW5FWA6auPQf3F+O72WBUijlt70LEG5H6uFvQ6Np+WsWFn+ys5WvwLdxg4wc6aFpk2bcNNNx1GbhDcAt4KhJhMcParO8IjopSgKZ8+e5fjx4zRp0sSlWalesoyFLGNFC3/LSb7qwQR7DiMEmj/j6fWVV5bT4P810PwcswfNZuLKiUG9LvsSmre8Hb3LUPYaPQlAM0JT60ZPzR27ArQvWRm19KZnCcrbsVp4qkMT78tfzuw1exRF4Y47Svj9709Sr5737vGtWwfeWV6ET5MmTUhPT8fk4Yel9fNbgh0k2IkGhYcK6fN6HxS8vx1NmNh0x6aAZ3i0nCPczCYzIzqOYNJVk1xe17GyY6Q/n675eUoml3DgxAFmbZ3F0r1LA57pKZlcQvPk2lVYC1GrJ/u6cibUJSEF15kQk5/H1RoDam0fLY6hNvXUwz5Of+8iPa/Z13MVFqo9n3z9pjWZ1KUaRfF/rD8lJWq9G73njqYZnkAdO6YmINs1aFDNhRdWeg1oCgtBRzspEQEJCQk+Z3S0fn7LMpaICpp2HpktmurBBHOOcDJhYtbAWdx35X217lMbjJo1BS32xp6e6gOVV5Zz4XMXag7wFu9e7HE8WpehxgOf1/y3feR6PrdN6Kt1o6f2j53W5TKjlt7srRB8zdLYl6BstsBmdOzc69DoOXc8BDvuNXvOnrVw6JDnD0qzGZo2Ba1FlkVskwRlEXHlleWaasW416EJxTnCSUFh4sqJHqsXJyUkMazDML9NP92bhtof61wfqF+bfpg1/q9uH49zMq7WxptVwC48JwprpQA7/RzjPDattX+cVaFuVff1LtLzmn09V3m5mifjL3ipqoKlS9Xt14EGOu51aPSe+8SJwM4bTUJds0fErogGOxs3bmTo0KFkZGRgMplY5qHQwp49e/j9739P48aNadiwIT179nRpWFZRUUFeXh5NmzYlOTmZkSNHcuzYsTC+ChEsPTuP7HVoQnmOcLLPVnmSn5VPtZ9EZ29NQ+dun0vG8xk0fa4pa75dg03j3If5oj7caLaQjLo8lAyMRN/MSTB8NeQsBHJqxmQfWw7QBv3Blb/WEEa1xtDbCiGY5Sv3OjR6z33hhZCTE/udxfPz1Wvhi96aPSL2RTTYOXPmDF27dmXOnDke7//mm2/o1asXHTt2ZP369XzxxRdMnTrVZZ/9pEmTWLFiBW+//TYbNmzg6NGj5OTkhOslCAPYl2y0sC/ZhPIc4eRrtqpX617MHTIXE6ZaMzxWsxUTJuYOmVtrWe/mJTeT92EeP5T9oG8wPcZSPWYtR1tkOj7obcAn+p4lKNV4nikpQM2fWQEuY1uOGhzpzTH11xrCvjymhQk12PoKcJ8csS+raBqTObhk2blzXZei9Jwb1EBrxQro3VuteROrevVSr4XJVHuGx2pVb3e/ViL+RU2CsslkYunSpQwfPtxx26hRo0hISOBf//qXx8ecOnWKZs2a8eabb/KHP/wBgL1793LZZZexZcsWrrrqKk3nlgTlyOs7vy8bv9vo/7iL+rL+9vUBnSNncQ4r9q8Iy1JWZotMin4o0ny8t8RggM2HNrskHntLagZ1Rifvwzz9A26VDXdshCgJCJ2TlLUkCuthRV36WuLnuBzgPc5XZNaqBTAVsHc4y8lRgwhfy0lWq7r8YrP5P9ZdRga89ZbnD28t5/YkHpKWN29Wc5GWLj2/3X7ECHVGJ5Zfl3AV80UFbTYbH3zwAe3bt2fgwIGkpaVx5ZVXuix1FRUVUVlZyYABAxy3dezYkdatW7Nly5YIjFoEKhwxt5ZlIaNMu3qaYbNV2a2zWXLjEsqmlFEyuYSyKWUsuXGJx0Tt6RunBzbgrEkQpmvjj/usiz1R2ChaW0Pkoz/QAfgBtUDiLfbn0bGsouVYZyaT90BH67k9sSctx7LsbFiyRN2KX1Ki/rtkiQQ6dVXUBjvHjx+nrKyMp59+mkGDBvHJJ58wYsQIcnJy2LBhAwAlJSXUq1ePJmrlKIfmzZtTUlLi9bnPnTtHaWmpy5cIP3uV5BNnT2iu3rvp0KaAqyprWRYqGFJAwZACj8do1S29G4PbD9acYDz40sEe73OvIu2pMamzE2dP6F+6ArAmQofhYNFWndT9FVlRl3KuIPigxIJrQ06ticJa2Mc5F23FADPRvzzm7D+oy296llXsx2rlryigr3P7Yk9aNrLScqSqNyclqVvxJRm5bovaYMdWk1k3bNgwJk2axBVXXMHDDz/MDTfcwLwgF5RnzJhB48aNHV+tWrUyYshCo8JDheQsziF5RjLpz6fT7G/NQp6gbDe2x1g23bGJYR2GOWZe7FWaN92xibE9xno8xoSJpklNNZ3jpcEvAdpmkqpsVXxQ/AHJM5LJWZzD5kOba10f5/t8OXr6qKbx1VI/Bczaw5SB1G658DLqbEywc0Pusy56EoV9MaGvNYT93MHON9rn2fS0Qhg7Vq2N4y9/x2KBgwf9j8HTubWw2dQk52AVFqrLacnJ55twxkMitIgtUZuz8+uvv9KwYUMef/xxHn30UcdxDz30EIWFhWzevJm1a9fSv39/fvnlF5fZnYsuuoiJEycyyUu6/blz5zh37pzj+9LSUlq1aiU5O2EQbAVjf1V+9XCuR+Pt+cory3lx24tMWTPF55i9VXmet2Me4z4Yp+n1Ws1WxzHO/+3r+Z2dOHuCps9pC8hcT5wIU8o0BTz2CsdwvuXCfDxXGQ7UQdR8nSQCq5Dszgz8CPhvcerKiHMD/Ox27hMn1FYFGRmQ6mFQ9irAWnZSeaqY7MuJE+quKy2/9fU+tyd1qXpztAmm5UYsjSXmc3bq1atHz5492bdvn8vt+/fv56KLLgIgMzOThIQE1qxZ47h/3759HDp0iKysLK/PXb9+fVJSUly+ROgVHiok78M8j001tfBUUyYY/paFAIp+KGLKmil+x5zdKtsxM+TM0yyRN87P763p6LgPxnmd4UltkEqL5BY+z+H5xBWwbxlUV/o8zMr5JaYk1ICkCO8NPgPVlvPbyneiv46OM/uY9QY6EFgNH0/s8232GY5mzaBLF/VfTzMcereM65l9SU2F4cPDU4emsFANdIJtXir0iaaZtGgaS0SDnbKyMnbt2sWuXbsAOHjwILt27XLU0XnggQdYvHgxr776KgcOHODll19mxYoVjBs3DoDGjRtz5513kp+fz7p16ygqKuKOO+4gKytL804sET72CsaB8lZTJpS0jNlisnBhgwu9VnbObp1N/7b9Danz46suD8CjfR71ep9PW2b5ndnxlNirJXk4kJ+4DXWbeW/gYgJfHtOajOxNoEnKzjJQZzj69FF3RtkDGfvOK/et3nq3q+v9Wy1cdWjs1Zt9iYdE6Gii531Wl8YCEV7GWr9+Pddcc02t28eMGcP8+fMB+Oc//8mMGTM4fPgwHTp04Mknn2TYsGGOYysqKpg8eTL/+c9/OHfuHAMHDmTu3Lmkp2vvmCNbz0OvvLKc5BnJAX3gG9kIVAv78laCOUFzPpEJE2ceOeNxlsjonlz+lvJueecW/vPVf3w+h9VspcpsVfN1zpVitVVR1e3PMGQuVpNJc6NPPcs8FgILHEyoHcafp/ZSmb1VhHvLCL2NOn15EZhAYOPPABYH0J9Kz3b1JTV76PUsFcybp86qhGp5KZRLccKzaOqDFs6xSCNQHSTYCT29jS1NmFBQfNaUMVrhoUJmbpnJ8n3LHfVs9ARn1196PY/0fqTWOENR38dXXR5Qc6Omb5rukrSc0SiDR3s/itI6m79WnuVoRk91NsdWTcbR7TxqbcDl6ZczC7Wwnz2IGIE6O+J+9QNpwhkIe12cSeBxbP2BNRrHrEchrg1NnWltbjoXWBVA4KK3eejMmWprCHs9mWHD/O/UCmUdGveGnP44Ny8VgQkkQI6HsUiwo4MEO6GnZ2bHbDLz4/0/Ummr9Jk87Okc/hKOvQk2cRo8z0AFM6Plja+ZHfdrcOLsCY6ePkpGowxSG6RSgOdkYveZkHLOJyB7u5J6ZnbMqIHKRA/n1sIMfMP5QoOexqZlzFr5u04vAFtRt5d7czPwWhAzHFpmXxQl+ATgUCSPysxOeEXT9Q73WGI+QVnEF72NLVMbpPpNHrYLdKu28+ODSZy285REbHRPLm9J2t6uwZ6f9tC5eWdSG6RSiPdk4qqa28cBmzmfgOzr6mtN4LUnCd+HuvV7GPp/8dg4n7g8GjjgYWxaxqyFlus0seaYuahLVc4yam5/k+CSjf1tV+/c2ZgE4FDUoZGGnOEVyqT2WB6LMwl2RNgE09jSm4LtBfR5vQ8r9q9wBBU2xcaK/Svo/Xpv5u3wnwUXbOK0O+ckYqN7cnm6PlqvgdZkYj35oloSeJ2ThLNR2zTcQGC/fJwTl0OV36jnOt0DHEHdXv5lzb9HON8qIthkY19VgKM9AVgacoZPqJPaY3UsLucKz2mECLyxpTe+ZmS0bNUGddln+b7lhubTODf31DqjBWqekp3W66P1Gqz9foumSsRVuDbiLEfNzXEvemu/PRN1FsOE98rK7hWLy4H3Cbx+jfsslJG0Vmx2v06pQGdqb3E3aobDffalvFzN0fHX88roSsh6qiBLQ87wCcdMmtaffbTO6kmwI8JKSwVjrTRtC/ezVdvoZSY750rPWnty9bmoD4V3FFJ4R6Hm66P1Gszc+Q/NwYUNWIVa5yYZNQnZXvdmrofbPwHm4Lo8Za+s7KlisVFVkfXOQmmhZ2y2muP9CcUMR7iXCgKtl6KncrQITqhm0gL52UfjrJ4kKCMJypESTEKx3oRnXwm9RicQezqnt0rKFpOFaqWa2YNmc9+V99Uam6/ro2fspoQGmKaUYfPXg4DzO42s6N/mPQZjE5v9sVd0NuqPQ71J11rPbfRW73AmgRpVBTmaKvrGK6PfZ8H87ENd3sBOEpRF1NNSwdgbPTMyvvppaV1mspj05fQMvnSwy+vyNqM1vONwCu8orBXo2Mfm6/rouQZK5VkGVZ/zm0xs4fyWavcVEpvbvzgdZ19W2olxic1aaJ1d0Upv0rWn1+lp6c8+w3HDDcbMcIRrqcDIKsjSkDP0jJxJC/ZnH22zejKzg8zsxCKjZnZAe9E/PXV31ty2hn4X9/N4XzAzWu7P0+D/NdB8/Or/q+Baa32/9WECLf5nr4ejpWxGIdCH4BttGj2zA9rGZkJdonNON3Gvy2NfypsMKIWutXBMJhg6FB58MPCclXAUboum2i1Cn2Bn0oz82UdDbywJdpBgJ1ZpKdZnNVsZ1mEYS270/X+jt2Um59o5n3zziabigN3Su7HzLzv1vRgfvAVHeoOds4+c5Y2EJMdOoVDQtbSDOhvkqZZNFbWXy9zpCa7Afx0e5/vf8DE2T5WZfdXlqaqZ9rL+w/jpfKOWCiq+LOZMyWkaNoTExJrbKtQkY5uPT4jTNOIA7aRWTpyJpro9/sgyloh7Rm5lH9tjLC9f/zJpDdJcbk9rkMac6+cwtsdYzYnGLw1+ye8xWvirH+Rtac6b0nOldDZkZN7pWVYaS+26O/bZkDn4n/XR2veqEM/J1pt93K8n6dpfXR5M6pNV/dbtPgOaYQa7VFBYCHnXFZN4eXuaXpdJYnYmZKpfidmZ7FAy2Yn3r2LacynFYa2XIkIvWmvlBEOCHRGzjNzKXrC9gPEfjuf42eMutx8/e5y8D/OYt2Oez/NZTBZMmCgYUmBIWwsttXP01PAxm8yk1E9hJsbkyng9D+rMiFb2ujtlQEnNv0tQZ1X0bmn3pAB1SWoFrjlH9lo9N/u4Pw8Y4GFs7ufUUpfHV2QWbC0cX7V4fLE3aty+9nTgJwcacTqs9VJE6EVrrZxgSLAjYpoRW9n11OvxlWisd+t8sOPZ+cNOXVWpSUjSVEMmUPaeVIHMZnuqfuxr5sfTlnZ3WiohL/Jzv7+ka611eUhAvTiJte/yVQtHT10bPQnALsmnQbZ1t1pivwqynutcF0RrrZxghPKPPCHCIrt1NtmtswNO/LXXqvGVi2Ov12M/VzDnM3I8+Vn5LNu7zOfz2ZfyjKpv440NbctKemTXfAXS98o+4xJMcGev5eNtkkTXNbWgvoCK2nfZlwLsHxqFhYE199TKXn3ZX1FCLWK5CnKor3Msy8+HZct8HxNLP3uZ2RExo6qigvKffqKqwsOnBYFtZddaQdm5KnIw57Of81jZMZfnCnQ8mS0yfS6tAbww6AWyW2eTQuj/h78sgMd4q9LsTG/fK80zLn64V0p2p+uaVuM1ocl5KcC+vLRixfm8CZtN/b53bzUpORhaqy9rNWVKbAYGob7Osc5XBWx7m5IXXoidn70EOyLqHS8qYuOECbzVsydL+/blrZ492ThhAj/uDH7Hk1H1erTQ0rA0kPF4WloDqFbU9YlJH08iZ3EOrx/7wtE1PFSO6jjWX+JwMIycxfKVdK25ZlAlatTkIU53Xgowsq6NN3qST7X4wx+Me65wCcd1jgeeEuDhfHXkSZO0VdKOBhLsiKhWvGgRq8eM4ci6dS5/fh1Zt45VubkUL14c1PMHkuQbCK3NOgMdT3brbJbcuISZ182sNctjU2wsb5RBXlpnSoz8lPPAvQO4N/4Sh4P9o9rIWSx/SddamqH66m3hvBQQjuaeepJP41W0N1GNJvYE+Jkza8/yxNJMWB1/y4todryoiO3Tp4OioLg1WlGqq0FR2D5tWlAzPForKNuTfAPJzdGTAB3MeAoPFTLp40m1z9MqG9vgF8FkRgnhp1wGtRtheqIlcTjYJp9GVWn2VSnZrhe+d46hAHlg/a/bfW7NMMPV3FNr8mm8ilQT1VhWWKgG5LE8EybBjohaexcswOTnw9lkNrN3wYKgzmNkvR5P9DYsDXQ8Xs+TNQk01AcK1qMaj9OyVduIJp+aZlz80FrLx9fOsUITFN7qvxZOOGubaGnUGK/isYZMqMXDTJgEOyIqVVVUcHjt2lozOu6U6mq+X7PGa9Kyr+e3JzsbWa/Hzp6EfOLsCd0J0IGMx2tiszUROgwHS4LmsQfiZtBUmVlr4rC/xGB/5zgGZAIvBPB4Zy/gv5aPnbeaQdloq4UTztomLsmn+tq+xbx4rCETSvEyEybBjohKlWVluv78qiwr03Sot2TnkebfBl2vB2onIV/43IUBJUDrrR/kNbG5fgr4mVUK1mTgTY3H6kkc1tvk01PC80odj3fXF6jdntU/XzvHfNXCCXdtE3vyad++wT1PrInHGjKhFC8zYXV01VZEu4TkZPXPKo3NWRKSk/0eVrxoEdunT1eXxtySnQ+vWUPPqVNZctOSgOvnFGwvIO/DPCxmiyPw8Ndc1OVluCVA66nnY09srhXwnCtVl7BCFPBYgW91HK/3j2Stxzv3pnJOeP5E5/nsTMBfA3xsMMJd2yQ7G7KfQ50Gq0PirYZMKNlnwrT2yYrWmTAJdkRUsiYm0rJfP46sW+dzKctksdCyXz+siR5K0zrxm+wMbJ82jSbt2tGse3fdici+kpC1sDcs9XTepIQkv+OxJzbXalRaVQH7lkH73/tcyrICXYBd6CvE57zcFMgfwJcWF9PotPd2BSZvdzRqBO3aAb4TnvWmpTg3+oxE+RD78pK/5p6eapuEsrN0vAnmOtc19pkwrR3Qo/W9J8GOiFodc3M5vGaNz2MUm42Oubl+n8ue7OwzcKpJdm7WvbvusWqpeuxLMAnQdh6rKbfKhqSm4Gd3VzVgb186C3gX/4047ezLTVp+x61y+u9Li4spbt9e41k82L8f2rUzpFIyqIHVMNSE5Eh+xo0dC126qMmeS5e6VvadNKn2B7BUAQ6M3utcl8XDTJjk7IiolZaZSc+pU8FkwuS2FcBksYDJRM+pU/0GJ6FOdtZa9diTQBOgPamV2NxjLNyxUQ14TF7nSAAYxfnWDEuAn9D+y0Fr888CYLjT975mdDQ5fVp3pWRvTUWfAc7gudFnJGht7mlIFeBGjYIbbLCPj6BAm6jWNb6qKbuXUIhWMrMjolq7m26iSbt27F2wgO/XrHH8+dWyXz865uZqmoUJJNnZ37KYMz1VjwFHbo094XjSVZOCCnScc3rG9hhLl7Qu/N+Bj9hwzVNgMoPFf9iyCHUpyD6KVNRZjhX4DiSsNcf5m9VxXmoykt5KyQOBj2oeY98aHumZHF+SkrwvC/irAgzqMk2XLn4+hNq1U2fJAgk+nZYTY5mv6yxUsT4TJsGOiHrNunenWffuVFVUUFlWRkJysq5gJBTJzs68Jgd7enqTmR/v/5FKW2XQDUQLDxUyc8tMlu9b7hI8Tc6aTGq/6VgVRfOMh6eGl/nAMj+P01qHxqilJnf2SslaAh4z8HbNf+ttKhptCgvhxhvVQMcXe+0Tvx9EcRCwiNDLzj5fADPW8sNkGUsYwl+TTiNYExNJuvBCXYGO/XEt+/WrtRTmzmSx0Kp/f93Pr7fqcWqD1IAaiDrz1X6i17+uZZlio8rP0pUzT3Vt/FUGNqEtkdeoppyeaK2U7FwJWW9TUT20NDUNVkGBukT1ww/+j4322iciNvkqoRCtJNgRQQllk04jdczNRfEzs6M12dmTUFdhduav/QT1G6Fo7K/lzFNdG1+VgTfV3O+PkU05PdFSKbkKbTNQgQplU1OX89QsXekRzbVPhAgXCXZEwELdpNNIRiU7exOKKsze+G0/ca7U//qGF55+Yr4qA2sR6rIb9hkof74M0flD3dTUmZay/e6iufaJEOEiwY4IiN4mneFY5nLm6XztbrqJaxcsoGW/fi5Nilr268e1CxbQ7qabgjqnv6rHY7qO4VjZMcor9a0p2FtPlFeWB7XzS4uJeJ+N0LP8cwL4qubfcOis4Zhgm4t6Eo6mpnZay/Y7kyrAQqgkQVkERGvdms9nz6ZekyYcXrvWZSfVZWPGBDyL4svxoiL2Lljg9XzBJjv746nqcdEPRTy/5XmPicS+Zno8JSAPvGSg/0To+il+t5p74ylRWY+5wHTAOZ2keYDPpcdM1F9mvuKAYF+bt/P6S7w26rx6yvbbRXvtEyHCxaQoAc53x5HS0lIaN27MqVOnSJH5Xr+qKip4q2dPzb95TRaLS1BkslhQbDZ6Tp0a9GyKM+d2EOE4H+A3aHJuIeE8G2M1W6m2VTN3yFyPfbe8Pc5islCt+MlQsSbClLKAW0SYUZeqtEwGlHN+Z1Mu6vKWVt127mRnZuB9CiqKikjs3p1y1BwZrTuytL42f8J93vJySE7WHvDYa5+M1ZJYFQaxuINHRD+tn9+yjCV001W3BjQtcwVL77KaEefzl5jtL5FYQWHcB+PYfMh1kcPX4/wGOlDTIuI9TAEudWlpwOmekNsAfYGOEXrVjGE1oWsu6ksom5p6orWBJUBGhtrkMxoCncJCyMlRA7X0dPXfnBzYbPSaohA+SLAjdHPUrQmSvT2DEezLauE4n9bEbL+JxIDFbGHW1lkut2l5nF9bZqKYAp/Z8TW/6SkhNxLsScC/x0cPLTdaqz1rYa/xE87z5uerS1P+vPVWdBR5M6TCsxAGkGBH6Ka1bo0/gbZncBfqdhDOtM4gHdr+qaZE4ipbFUv3LnUkLQebgGzf+VVw+WgKTCaPNXJ8Ph61Hg14rhfjKyE3EuxjUFBzY3xxrrWjh7faOYHU+AlWr17wwgu+y/YXFERHoOOvwrOiqBWeZYZHhIMEOyIgWurWaFLTniEYgbSDCJTWGaTP3nxdcwsJm2Kj9Jy6yKG39YQz551fY3uM9Vgjx58q4Ee814uxJ+RGGwv+a+1orfZsp6V2jpYaP3rP63U8NctBkyZ5DyB691ZL+kcDLdvk7RWehQi1gIIdi8XC8ePHa93+888/Ywnyr30RG3zVrdG1xBVAewZ3upbVnM6ndzu8nhmkX9Z+6th+7ndIJjMp9dVFDnvriUA8M+AZlty4xGWHl3uNnNl4r4hs9yme68W8iLGVkE8H2UDS+fHVqK8r2GrPdlpr5xhVZdrveDwsB3ny6afRsTykdZu8VHgW4RLQ1nNvG7jOnTtHvXr1ghqQiB3emnS26t+fil9+4afPPvO9Nd1ioWW/fkFv/bYvqx1Zt07T+U7s3u1ze7o3emaQ6lXBDW0H8+G3H/tckrKarQzrMMzROsLeemLF/hW6l7IeXPUgWS2zPG5nt7dJuA/IRN0KvZTzDTGzgQ01x3qqFwNqDR4jt24eaNeOdvv3e+1+3h6oj+digKcbNeKAWz8nBXgPeAPX16a32ae/2jmg1s7pUvOcY2v+2/2aGtVk1NdykDtdDUBDSM82eXuFZ9mhJUJJV7Dz4osvAmAymfjHP/5BstNf5NXV1WzcuJGOHTsaO0IR1bzVrTleVMTqMWN8PjaY9gzuOubmcnjNGr/na5iRweoxY9SlKLfk4sNr1vjcnq63oeikrEms+N+HPg/z1EIiPyufZXuX+T+HG3uys78qzdk1X87bxkejrU6N0Xk67gGLs890PpcZGAAMxfW16f0MDaR2jqdratRnt305SE8xQc0NQEMkJUXX/ypS4VmEnK46O23btgXgu+++o2XLli5LVvXq1aNNmzY89dRTXHnllcaPNISkzk5oFC9ezPZp0wKqexNI0T9/5+s4Zgx733jDdysFk4lrFyzwOsOzccIETTNIGX378tvHH+efxf/h3k8m6K6zM2/HPMZ9MA4ARcd8itlkpmxKma4mo3rqxYC2/Jhws6LOpAS7/T1SNXu8jkdnbR1nZjOUlfmfMdFb/0br8Tk56rKbryDNalW30y8Jd90CETdCUmfn4MGDHDx4kL59+/L55587vj948CD79u3j448/jrlAR4ROIO0Zgmks6u98ZYcPB709XVND0epqjqxbx9K+fbng7r/zUulIBqX18dhCwlOgc7yoiE7/2sPUdW3oeDxJ19qRc7KzVnobdQYT6ARW19k/o5KAw107x59Aqibb+WsAqrf+jd7jtWyTlwrPIlwiWkF548aNPPfccxQVFfHDDz+wdOlShg8f7vHYsWPH8sorrzBr1iwmTpzouP3EiRPce++9rFixArPZzMiRI5k9e7bLEps/MrMTelpmaoysgOx+Pl1Vn81mbty+3fs4vcwgYTKps0Zu8/f28Xf5v4dIG3odKfVTvM68eLoG77f7if9ccVxTpBDqmR0z6vLNRLQva1lRg5G5wI3AhRiX+2NBHfdctHVg96euzOwUFKh5QO7LY1arGoC4V17We7zdvHlq/pDexwmhVUgrKFdXV/Paa69xyy23MGDAAPr16+fypdWZM2fo2rUrc+bM8Xnc0qVL2bp1KxkZGbXuGz16NLt372bVqlW8//77bNy4kbvvvlv3axKhZU1MJOnCC70GEEZXQLYmJpKQnExlWZkj8DFqe7rHGSR7oFPzeE/j//Kvz2Def8RrIOLtGtxQfCEdf2zgN0Kwmq2M6DhCV6AD+uvF3If2Le32RN1NqMFIKjBcw7m0GuT03HpEU+0cX/RUTXbmqwGo3vo3wdTLGTtWreQ8bJjLZCvDhkVPhWdRNwT0O2fChAnMnz+fIUOG0LlzZ0wBNh0cPHgwgwcP9nnMkSNHuPfee/n4448ZMmSIy3179uxh5cqVbN++nR49egDw0ksvcf311/O3v/3NY3AkopPWxqJ7feTT2HlqBvr/9e3rGpD4omE7vHti9n+feIKjGzcGNX5f1+DGr9J46ppvfY7JU7KzVvnAMj/HOC8VeUrIxct/u3/eajmXFmbgbQ/P70shagLyclx3TU3mfLKx3msRavn5sGyZvsf4Wh7SkvDsnOCs93h32dnql/TGEpEUULCzaNEi3nrrLa6//nqjx+PCZrNx22238cADD/Cb3/ym1v1btmyhSZMmjkAHYMCAAZjNZrZt28aIESNqPQbULfLnzp1zfF/qa2FbuAhFt3B7/Rp/My/OFZC1LIU577Y6unGjxyUmd3q3w9uPO7JhQ1Dj93cNOvzUgDt2pvN69xLMCticplSck52zW2cHtCPIXi9mHLWXp5yXodw/y+xb2p2/9/Tf3s4V6HKWPSFZz2dmAeqWcvvSF5yvnbOM80thgV6LUOnVS13u8bQc5M55echT4GGvf+NvktNe/+bECX3Hl5d7D2SSkiTIEZET0DJWvXr1uPTSS40eSy3PPPMMVquV++67z+P9JSUlpKWludxmtVpJTU2lpKTE6/POmDGDxo0bO75atWpl6LjjUTCJw/4YtcTkdyms5vG+BLId3ojxa3mOAd+k8tjaNmQeaeQx2blzj7F+K/764qnisvsylFHs5+ob4OMDqYbsq3aOghrc2K9VOK+FFt6WgzIy1AlL+/f+lof01r85elR/vRwholFAMzuTJ09m9uzZvPzyywEvYflTVFTE7Nmz2blzp+HnmDJlCvn5+Y7vS0tLJeDxwdtsiZbaNFrorV/jbYlJy1KYfSnLZLF4TYL2t0zmcfxBLpFpvQYdfm5Ah23JDJ21kbOmXx3JzlpnLfwJZb0YT+daj1qZeYLOx76AvpmVaKudEwhvy0F6lof01r/JyJB6OSI+BBTsFBYWsm7dOj766CN+85vfkJCQ4HL/u+++G/TANm3axPHjx2ndurXjturqaiZPnswLL7zAt99+S3p6eq22FVVVVZw4cYL09HSvz12/fn3q168f9BjrAi2zJdunTaNJu3a6gwQ7vRWQPS0xaV0KQ1HAZCKjb1+OrF/vUkG5Y25uQK/hxO7dmgOdVv37exy/3mvQqNEF2Jsl6K34q4X78pQzoz/87VWdbwSOaji+b81jtCrnfI6OL1WoFZDLqb0cF02rL+7LQXqWh+wJz1rr36Sm6jtelqlEtAoo2GnSpInXfBij3HbbbQwYMMDltoEDB3Lbbbdxxx13AJCVlcXJkycpKioiMzMTgLVr12Kz2aTej0GMTBz2RWsFZG9LTLqWkhSF3z7+OAnPPWdI/pHjGvk7v58lskCvQSCzFoHQktwbqGxgMWo/Kl9hown4q87nDqR2Tjx/ZmtJeHZOcNZ7vBDRKKBg5/XXXzfk5GVlZRw4cMDx/cGDB9m1axepqam0bt2apk2buhyfkJBAeno6HTp0AOCyyy5j0KBB3HXXXcybN4/KykrGjx/PqFGjZCeWAYxMHPbH3ljUX8VlbwFVIEth1sREr7NEWoMgzTNKACYTF3Tq5PXuQK5BsLMWWhm1TOZLqBKDU1ADM621c+J9JcZXwrOnBGe9xwdDdmyJUAmsvTLqctHq1at55ZVXOF3TyO/o0aOU+ahP4m7Hjh1069aNbt26AZCfn0+3bt147LHHND/HwoUL6dixI/379+f666+nV69e/P3vf9f3YoRHRtam0SKQist29mWgWh3Y3ZgsFq9LSYEkYeudUfJ3jfReg3BU/NWb3BuMUCQGR1vtnGigt/5NqOvl6K3OLIReAVVQ/u677xg0aBCHDh3i3Llz7N+/n4svvpgJEyZw7tw55s2bF4qxhoxUUPbMyKrDgZxb7xKTo/loAL2vAq3eHMprpOUahKPibw7qDI6vZTKjelM5MzI3qBBtS2SbCN+W8mgRqt5YWgVanVkICHEF5QkTJtCjRw9++eUXkpze7SNGjGCNn5wDETuMmC0J5ty+Ki57Yl8GwmSqNWaTxQImk8elsGCqN4fyGmm5BqGetbAvk/lrC+G8TGaUJKA5xsy02JfITNS+Vtaa28NZOyeaJCVB8+b6kpz1HO9LMNWZhdAjoGBn06ZNPProo9SrV8/l9jZt2nDkyBFDBiaig6bGlwHUpgmVQJbC7AnGvvhqEBrpa5SP/+acgVb8jbbGmMGItto54nx1Zl/s1ZmFCEZACco2m41qD7tzDh8+TKNGjTw8QsSqYBOHI8G9lYOvZSAjkrBDcY30LOOFsuJvvCX3RlvtnLpMbzVnX9WZhfAnoGDnuuuu44UXXnAkAptMJsrKynj88cdD3kJChF+7m26iSbt27F2wgO/XrDGkNk04eNtt5SyQJGxPz2nUNfLU16tlv35cNmaMz+cYi1pHZxbqcpLz1vBJBL48Y18m05qzEyufRdFWO6cu0lvNubRUgh0RuIASlA8fPszAgQNRFIXi4mJ69OhBcXExF154IRs3bqzVwiHaSYKydqHojRVJoUgwDvQaBZok7c7oWQtJ7hWhUF6u7rrSWp25rEyCHVFbSBOUW7Zsyeeff84jjzzCpEmT6NatG08//TSfffZZzAU6Qp9AEoejWSgSjAO5RsEkSbszMrEXJLlXi3LgGMYmaBulvByOHVP/jSb2as5WP+sLViuMGCGBjghOwHV2rFYrt956K88++yxz587lz3/+s8vOLCFiRaQTjCH4JOlQk+RezwohqOaroRQLtWvy89Xt5b5IdWZhhICDnX379jF+/Hj69+9P//79GT9+PHv37jVybEKERaBb1qsqKij/6SeqKio8fu9NxcmT/LJ/PxUnTzoed3jtWt8NTHFNko6EbNQ6OmVASc2/Swj/jE60zKIUoC7vraB2VeneQCSrjRUUQJ8+ak8rp969rFgBvXtDKEqhBTKDZK/ObDLVnuGxWtXbA63OHK0zWiIyAkpQfueddxg1ahQ9evQgKysLgK1bt9KlSxcWLVrEyJEjDR2kEKGmJ8G4VhKxyUTihRdS8dNPamEQL0nF+998k6/+/ncqfvzRcVtis2Z0vPVWQ5KkwyVSyb2h7M0VyFiMbr5qFH+1a0CtXdOlizEtHgoL1S3k9p1V9srKkydre/6xY9WxzJql7rpyfo5Jk/SPMdjxiPgUUILyJZdcwujRo3nqqadcbn/88cf597//zTfffGPYAMNBEpSFM18Jxt6SiN25JxVvvv9+vvvoo+AHZ3Cl6ljh3JvL29b6cC6lRaqqtBY5Odq7lC8JcnBGVz8OtjqzVGOue7R+fgcU7DRo0IAvvviCSy+91OX24uJiunbtytmzZ/WPOIIk2BHOvAU7mtpRuDOZ6HDbbezTkmvjp5GpyWKhZb9+9H7hBe3n9yFWas1E226wcLToCIR92ebii7W9RYPd4VRYqC6V+enOwqZN4ZlRibbxiPAI6W6sq6++mk2bNtW6vbCwkN69ewfylEJEnL9GoFqSiN2ZzGaKFy3SdnCYkqSjOanWk5moMzq+WFBrDIVDtFWVdk5EbttWeyxur10TqGirfhxt4xHRJaCZnXnz5vHYY49x4403ctVVVwFqzs7bb7/Nk08+SUZGhuPY3//+98aNNkRkZkf4q3HT/eGH2fnMM9pzawykt86OL9G2HORPNM6iRNOYvC3baBHMzE601ciJtvGI8AnpMpZZ41+3JpPJY1uJaCPBTt0W0PJUGKX16EHXCROCrlQdbctB3jgvr5Wizj5pVYJaYyjUoiFnR8uyjTfB5uwcO6ZuZ9eqpERtHhoq0TYeET4hXcay2WyavmIh0BEikOWpsDGbqX/BBYa05Ii25SB3npbX7kb7L6lw9uYKZfNVrbQs23gTbO2alJTzfXb9MZvV40Mp2sYjoo+u3/Bbtmzh/fffd7ltwYIFtG3blrS0NO6++27OnTtn6ACFCCWtNW4cTCZdz2+yWDDXqxfAyGrYbAHX1nGu+1OOumXb30pHFWpvrXCXJvFWs+ZDzm8z98cGvBGS0dUW6arS9iaaepeugq1dYxdt1Y+jbTwi+ugKdp566il2797t+P7LL7/kzjvvZMCAATz88MOsWLGCGTNmGD5IIUJFVyNQ0L1moFRX027UKJ2jclNTW0crT4nWHz/6aFQl1TrTUrNG69jHEb5E60hWldbTRNPOXm9m0yZjtl9HW/XjaBuPiC66gp1du3bRv39/x/eLFi3iyiuv5NVXXyU/P58XX3yRt956y/BBChEqCcnJ2ue/Qd+xwAWXXUbmQw9x0fXX6xyZ6zkTkpM1HVq8aBGrx4zhyLp1LqVzT338MSaNs1fhXA4CbctrWq96uJfhIlVVWu+yzcGDalLukiXGbbsOZfXjeBiPiC66fnP/8ssvNHfK6tqwYQODBw92fN+zZ0++//5740YnRIjZG4Fq/uTQ+ef0L/v2UVVRQfZzz9Fz6lSSdDbK1dOA1Fcz0YSzZ8lcuxazn3UPKzAC37uHjGzXoHV5TetVj9QynNHNV/2eT+eyTZs2oVm6GTtWnSkaNuz8/0JGzyDF8nhE9NAV7DRv3pyDBw8C8Ouvv7Jz507H1nOA06dPk5CQYOwIhQixjrm5odtS7rQE1W7UKEasW0fO5s0MXrqUPvY/Q33QU1vHX6L19QsWYPMT1PlKqg1FfR49NWu0CvcyXKREy7JNdrY6Y1RWpu5yMnoGKdbHI6KDrmDn+uuv5+GHH2bTpk1MmTKFBg0auBQR/OKLL7jkkksMH6QQoZSWmUnmlCnaH2Ay6VpDcF+CSmzShAvat6dl374BNSD1REuidYedO7lj2jSw2bC65R75S6o1uumlfXYogSC6EXsR7mW4SIm2ZZukJHU7d7Qk/0bbeERk6fo9M23aNKxWK3379uXVV1/l1VdfpZ7TTpN//vOfXHfddYYPUohQ63DrrTTr0cPvTIvJYqHVgAG07NevVoDi8Vg/S1DtbrqJaxcscF1Kq2kkeu2CBZqLCGpNtB7w1ls8lpvLDb/+qjmp1l8CsYL2xGD32aFmqMs//nJ2rEAG/jsXa1mGiyeybCOENgEVFTx16hTJyclY3H7ZnzhxguTkZJcAKBZIUUEBGosLmkxcu2ABiqJoPlZrjRxfDUi1PPatnj01l5C9cft2KhMTNfXGMqqAnrfqzRb816wxAS8D44n+ooiREmwTTSFikdbPb39/KHnUuHFjj7enpqYG8nQiTIL5MI0bxcVw+rTHu9JMJnrdeiu7X321VtuIKquV0wkJXDF5MsmtW5OQnEzPqVPZPm2a1xYTWpeg7KyJiQH/XOyJ1kfWrfPbjb1lv37qufAe5NirGCegJhD7C6GcE4M9Paev2SHn0boHPu5tLMyos0i+2l3UxUAH1ABHghwhPAtoZifexPvMzvGiIvYuWMDhtWvVv/xrlkkuGzPGkMq8MaO4GNq3D/jhKy65hNP166vfmEy07N+fFllZlGzdyvdr1jiubav+/emYmxv2a6tnZsrb2ApRt4LbAxwz+hKIvbVr0DI7ZKl5bInTuUegJkw7BzCbUbeXL/VznBAi/oW0N1a8iedgx1+DSyOaS7oLZAYpLLNOO3dCZmbAD/+obVt+cf7TuSa/p+fUqbQdNkzX+EP1eosXL/Y72+Tt5+1tmUkrb00v9TbO/BGoxP/ymnMPLS0TGnqPD7dwLEPJUpeINyFdxhKxwVfdFfv326dNo0m7dobMQgQygxTTs041fyfouYahfr3tbrqJJu3asXfBApfZppb9+vmcbfK1zKSFPWfH0+ennu3lNtRAR0uPxiQv53PnabZqGDCZ6JgJKixU+1wtX+74cTFsGEyebNxOqnCcQ4hoJjM7xO/MzsYJE85/qHpTs+zS+4UXgjpXIDNIYZ91Mnpmp4Y9D8bfNQz369Uze6RlmckXX4nBemd2PM0OBcrbbJV7LlCkFBRAXp7a0NO53qPVqtbImTs3+B1V4TiHEJES0q7nIvpVVVRw2P6XvS82G9+vXh1Qo0k7vzNIisL2adP4cefOoB4TrZTqar/NOiPxeq2JiSRdeKHfQEdrFWOP58B/08sk1JmUcG8bN3LLvFZ6qksXFqpBiKLUbuhZVaXePm4cbA5igOE4hxCxQIKdOFVZVqa9aaWi6Go06c5f5V4Ak9nM3gULgnpMVPPTrDOaX6/eKsb2SkR6ml7m4397ua/qzYHQ0nPLqF5agVSXnjlTnW3xOT4LzApigOE4hxCxQIKdOGXy1zQnyOPttFTuBdfZj0AeE/V8NOuM9tebgvZfBGbgJ/Q3veyFOvtjovYMj5bZIb20zlYZ0UsrkOrS5eVq/oyfVmVUVcHSperxeoXjHELECgl24pTi7zdckMfbaa3cCzhmPwJ5TDTzVyk52l+v1mUmC/B7IJXAml6ORZ0FGgaaqzcHSm9SdKC9tAJdKist1fWWoDSAAYbjHELECgl24lRCcrLf1gcOJpPXWQlN59HZJyqQx0Qzf806Y+H1al1meo/gmn9mo84GlaF/dkgPvbNVgW5LCHSpLCVF11uCQPZNhOMcQsQKCXbilDUxkZb9+/sPeEwmWg0YEHTlXj19orQ+BuCCDh2it9qzyaSpWWcg1yjcfC0zOfO7PIO2BN0kApsd0nqucCRFB7NUlpSkbv32t3pstcKIEep/Hzumb6lJ7zmk7o6IZxLsxDFfsw2BHOfr8Yqf+XL32Y+Oubl+c1gAftmzJzp3ZNUEiVqbdQZyjcLNeZnJV4jsaXkmkATdQGk9V6iTooNdKsvP15ZP8+OPkJwM6enqvzk52ndP5eer28t9qa6GSUZmhgsRhSTYiWNpmZn0nDoVTKZaswomi0XTrESozpOWmUmTjh39PrfJYomaHVnXvPoqOZs3M2LDBm7csYPeL7yg+dqF62cRLPsy01C0L88EkqAbKD3nCnVSdLBLZV9+qe2xn356PvfGZoMVK6B3b5in4cL26qXW0TGZas/wWK3q7XPnSmFBEf+kqCDxW1TQ7sedO2tV1A1F/yY95wmkS3fQyztBFhWkqAiCvF7h+lkEQ28RQH/HGdWJvBA10PHX9Xw18BvOt4UIZS+tQDvCFxZCnz7aq0N4YjLBpk3aApXNm9Xt5UuXnq+gPGKEOqMjgY6IZdIuQjg0696dZt27h7z/lJ7zBLJDKWpzd3QI188iGHqXZ9w7lbuzzwAF+5lqTwb2FVgoQP+a/3ZuC7GE0PTGygeW+TnG01KZvf5NgJsggfP1cbQEK9nZ6pf0xhJ1lSxj1SFaK+qG4zwR2aHUqFFkH+8kXD+LQOhZngH/eTFG1LIJpMqz+/KWEUnR7gJZKtNa/8YfX/Vxyss9JzQnJUHz5hLoiLpHZnZERNh3KB1Zt85vonJS06b88vXXwS/ztGsH+/fD6dP6H9uokfr4OsC+k8nf8oyWJSw7e4JuoJ+xeqs829nHPw7oQmgaf46teW73pbJheF4q01P/xh97fRx78CINP4XwLKIzOxs3bmTo0KFkZGRgMplYtmyZ477KykoeeughunTpQsOGDcnIyCA3N5ejR4+6PMeJEycYPXo0KSkpNGnShDvvvJOyKC9CJ1RadigBVPz8M6tycylevDj4k7Zrp+bd6P2qI4GOnZadTHo+r4OpZQP6Z5vcGdUWwhs99YP01L/xx7k+TkGBmge0YkXgCc1CxKuIBjtnzpyha9euzJkzp9Z9Z8+eZefOnUydOpWdO3fy7rvvsm/fPn7/+9+7HDd69Gh2797NqlWreP/999m4cSN33313uF6CCILzDiVfv/0Vmy2mGoPGA1/LM/6rI7kyosGn1ro53hixlKaFlqUyrfVv/HGujyMNP4XwLWp2Y5lMJpYuXcrw4cO9HrN9+3Z++9vf8t1339G6dWv27NlDp06d2L59Oz169ABg5cqVXH/99Rw+fJiMjAxN54733VjR7sedOynMz6f8xx99HmeyWGjZrx+9X3ghPAMTHncypaMW8/NfJUkVzt1Y/pSgBiORZvRurJwcdQbHVx6Q1aoGWUuWeD9GiFij9fM7phKUT506hclkokmTJgBs2bKFJk2aOAIdgAEDBmA2m9m2bZvX5zl37hylpaUuXyJyLujUifKff/Z7XEw1Bo0T7sszP9b8qzXQAeMafGqt8uyN81Ka1krPoaKl/s3NN2urjyMNP4XwL2aCnYqKCh566CFuvvlmR/RWUlJCWlqay3FWq5XU1FRKSkq8PteMGTNo3Lix46tVq1YhHbvwLdobZYrzyzOV6MvVeQ9jG3x6aiYKvis+w/mltCLCV+nZn7Fj1ZmZYcPOr+LaE4o3bYI33/R9/9iaCysNP4XwLyZ2Y1VWVnLjjTeiKAoFBQVBP9+UKVPIz893fF9aWioBTwQ5tqFrLDAY7Y1B45k9UVhrwcEBIRhDds2XvW7OV8C1fh5TDbRBXQazULv68jLUWSMjAzMt/NW/0VIfx57wrPF/H2n4KeqkqJ/ZsQc63333HatWrXJZk0tPT+f48eMux1dVVXHixAnS09O9Pmf9+vVJSUlx+RKREwuNMoUqHA029YylOWoRQX+1bvJRixIq1N5O76nXV7j5q3/j6/5INfz0VstHiGgU1cGOPdApLi5m9erVNG3a1OX+rKwsTp48SVFRkeO2tWvXYrPZuPLKK8M9XBGEWGiUKVShbrAZCE/LW/ZaN5uA/6G911csCmfDz8JCNSE60OakQkRCRIOdsrIydu3axa5duwA4ePAgu3bt4tChQ1RWVvKHP/yBHTt2sHDhQqqrqykpKaGkpIRff/0VgMsuu4xBgwZx11138d///pfNmzczfvx4Ro0apXknlogOsdIoU4S+wWagvNW66Y626svh2p4eCuFq+Cm1fESsiujW8/Xr13PNNdfUun3MmDE88cQTtG3b1uPj1q1bx9VXXw2oRQXHjx/PihUrMJvNjBw5khdffJFkHXkdsvU8ekRDo8xo7lsVTULZYNNIx1CTkbXSuj09FL22ghXKhp9atsvraU4qhBG0fn5HTZ2dSJJgJ/pEIuA4XlTE3gULOLx2reOTomW/flw2ZozMKPkQjR/6zvR2cS/D9+soRM3/WY5ra4jJRE+QF4qGn1LLR0QjCXZ0iFSwIzMI0aN40SK2T5+OyWx26dVlslhQbDZ6Tp1Ku5tuCuoc/n7e8n4InRz89/qyogYtvj6nC4A8andft6LmKUViR1c4lJeruTlad3yVlUmzUREeWj+/Y2LrebyRGYTocryoiO3Tp4Oi1GpKav9++7RpNGnXLqCfj7+ft7wfQi8fdXu5L/6SqgtRAx1vO7ogtA1HIymQWj4S7IhoIjM7hHdmJxwzCEKfjRMm+O2+HmirCn8/74sGD+a7jz6S90MYzEMNRgKdlTFqdigWycyOiFZx2S4i1vmdQYizZpdVFRWU//RTVLd3qKqo4PDatT4DHQisVYWWn/d3H34Y9PuhqqKCsiNHKDtyJKqvdaT5257uK9ApJ/53dPkSqVo+QhhFlrHCaO+CBbX+gndnMpvZu2BBTC9fxNKyTCCtKrTm02j5efvj6/1wvKiIz2fP5kenOlMAzXr04IoJE6LuWkcD9+rLWpOqS9HeJsNWc3y8fd7n58OyZb6PMaqWjxBGk5mdMAnlDEI0KV60iNVjxnBk3TqXQhxH1q1jVW4uxYsXh20sWmaWHK0qtNDRqkLrz9sfb++H4kWLWJ2bWyvQAfhxxw5W3XZbWK91rLFXX9YakNjbZGjh3HA0noSrlo8QoSDBTpjUhWaX0bJMd7yoiI0TJvBWz54s7duXt3r2ZOOECR7PG6pWFbp+3v64vR+OFxWxfdo0vw/b/tRTcbMkGmnR1CYjkvw1Lx0bj1vRRFyQYCdMQjWDEE3syza+2JdlQiWQmaVQtKrQ9fP2x+39sHfBAvXPaA1Cea3rmmhskxEJ2dlqHZ2yMigpUf9dskRmdER0k2AnTOK92WU0LNMFOrMUilYVWn/e/ri/H+zX2WcZWyffr14ds0uigSpHrZqsJUlYz7HR2iYjUvw1LxUimkiwE0bx3OwyGpbpgplZanfTTVy7YAEt+/VzmZ9v2a8f1y5YEND2by0/b3/c3w+6l8cUJSaXRANRiLo9PBm1PURyzfee+lPqOdZZMDu6hBCRI7uxwsg+g7B92jSfdVVicReNY9lGYyEOo5fpHDMe/oJJp5kl99mzZt2706x7d8MqGWv5eXurs4PZDIpS6/2g6zoDmEwxuSSql3NlY/uVsaHWxVmGaw0dPcd6EuiOLiFE5MjMTpiFYgYhGkR6mc7ImSVrYiJJF15oyBj9/byzn3uOaxcsoFm3brXG2Cwzkybt2tUaW8t+/TTn7LQaMCDmlkT18lfZWAHuQZ210XLsOPzP8ID+HV1CiMiRmZ0IMHoGIVp0zM3l8Jo1Po8J1TJdpGeWfPH38z65fz/Hi4rU2R6n2Z2fPvuMVbm5taood8zN5fDq1ZrOHYtLonrNpHZVZE/uBdpoONaC2s29ruTeCFEXyMxOBBk5gxANQpHoq1WkZ5a08PTzDiSpOi0zk4633x6uYUc1rZWNAT5DrW5cV6sgC1GXSbAjDBXJZbpYTAAPNKm67PBhv1vbTRZL3G8911PZWA97FWQhRHyQZSxhuEgt08VaAnigSdVGJGPHiwTUv9iMDnjitQqyHuXlavfylBTZXi5in8zsiJCJxDJdLCWAB5pUHQ3b/CPNvnW8GfoDHX+Vj+K9CrI/hYWQk6N2OU9PV//NyYHNWrK2hYhSMrMj4k6sJIAHmlQdzcnY4eBp67hWZqQKsi8FBZCXBxaLSwFyVqxQm4DOnSstIURskpkdEbfCPbOkpfGos0CTqmMhGTtUfG0d98c+Y1OAMVWQ9VRfjgWFhWqgoyhQ5XZxq6rU28eNkxkeEZsk2BEiSHoaj7oLNKk6FpOxjWDfZh4I+4xNsFWQA62+HO1mzlRndHyxWGDWrPCMRwgjmRRFY5OdOFZaWkrjxo05deoUKSl1PS1R6FG8aBHbp0/3mRDtL0+oePFiv0nVnp4j0MfFqnLUwELv0pUVNdDxVBlZbxVk5yU058kPX+eIBeXlam6OxpVRysokaVlEB62f3xLsIMGOCMzxoiJWjxnjuymnyaRWSPazA+zHnTvZu2AB369Zo37imM206t+fjrm5Ph8b6ONi0THUmRQ9zKhLV5MIvkhgIdAHdQnNGxPq7FCsFSQ8dkxNRtaqpERtAipEpGn9/JYEZSECZK+R46vTu71Gjr/AI9Ck6lhJxjZCCtq3mZuA/2FsOwctlZpjtfpySoqunHfkb0IRayRnR4gA2Gvd+Ap0wLXWjRaBJlXHWzVuT5JQ82r8/YVmRc2haYNxgY7WSs3+qi9Ha1JzUhIMGwZWPxfXaoURI2QJS8QeCXaECIDUuomMfCKzdVxPpWZP1ZdjIak5Px/8xO5UV8OkurovX8Q0CXaECICj1o0WcVjrJlJ6oSYBG7F1XA/7EpoW7tWXC1BzfVZwPmCy1XzfG5hn0BiD1auXWkfHZKo9w2O1qrfPnQvZsbZGJwQS7Ig4oLe+jRFCXesmEq8pFpSjJhyvJvCt44HQs4TmXH3ZV12gqprbxxE9Mzxjx8KmTeqSllMBcoYNU2+XgoIiVkmCsohZx4uK2Ltgwfk+UTVtIS4bMyYsO5E65uZyeM0an8forXUT6dcUrQpRE4SXo86K2IObVcBv0L51PBj5wDI/x7gvocViUnN2tvolvbFEPJGt58jW81hkRH0bQ8ZhYK2baHlN0SaaatvMQ52J0TIWPXWBzEAZdbcflxCBkjo7OkiwE1uMrG9jBCNq3UTba4oW0VjbZjPqTMxSzs8yearlo7cuUAnqVnkhhHZSZ0fELSPr2xjBiFo30faaokU0LgNl13z5q76spy6Qe1KzEMJYkqAsYkqo6tsYIdBaN9H8miLJqNo2wZzfuSaO+/dJ+C5aGGhSsxDCeBLsiJgSj/Vt4vE1GSHY2jaBcq+J0xDIILAaOZGqCySEcCXBjogp8VjfJh5fkxGCqW0TKE81cRTgBwKrkROpukBCCFcS7IiYEur6NpEQj6/JCOFeBvJVE8ednho5Y1ETqMNZF0gI4UqCHRFzOubmovhZ9tFb3ybS4vE1GSGcy0D2ZGg97MnR/mQDS1C3l5fU/LsEmdERIlwk2BExJy0zk55Tp4LJVGs2xGSxgMlEz6lTY2rXUjy+JiOEaxlIazK0O73J0f6SmoUQoSF1dpA6O7HKiPo20SYeX5MRtNa2CZTemjjupEaOEJEhRQV1kGAntgVT3yZaxeNrMoK/2jbBPK/WasfupPqxEJEjRQVFnWFNTIy7gCAeX5MRkghNUGFPhl6BvqUsa83jJNARIrpFNGdn48aNDB06lIyMDEwmE8uWLXO5X1EUHnvsMVq0aEFSUhIDBgyguLjY5ZgTJ04wevRoUlJSaNKkCXfeeSdldaQOiRDCOFqSod1JjRwhYkNEg50zZ87QtWtX5syZ4/H+Z599lhdffJF58+axbds2GjZsyMCBA6lwqiA7evRodu/ezapVq3j//ffZuHEjd999d7heghAiCrhXNw6Er2Rod1IjR4jYEjU5OyaTiaVLlzJ8+HBAndXJyMhg8uTJ3H///QCcOnWK5s2bM3/+fEaNGsWePXvo1KkT27dvp0ePHgCsXLmS66+/nsOHD5ORkaHp3JKzI0RsKkTdMr6c84nLw4DJBB6EuCdDm4AWqEnIoUiOFkIETuvnd9RuPT948CAlJSUMGDDAcVvjxo258sor2bJlCwBbtmyhSZMmjkAHYMCAAZjNZrZt2xb2MQshwsdTtWM91Y29ca+JcwY4gtTIESKWRW2CcklJCQDNm7tu6GzevLnjvpKSEtLS0lzut1qtpKamOo7x5Ny5c5w7d87xfWmpUV11hBDh4Kvasf37cUAXAg9K3JOhQ5UcLYQIvaid2QmlGTNm0LhxY8dXq1atIj0kIYQOWqoda61uLISIf1Eb7KSnqyW+jh075nL7sWPHHPelp6dz/Phxl/urqqo4ceKE4xhPpkyZwqlTpxxf33//vcGjF0KEQjnwLbAMbf2r9FQ3FkLEr6gNdtq2bUt6ejpr1qxx3FZaWsq2bdvIysoCICsri5MnT1JUVOQ4Zu3atdhsNq688kqvz12/fn1SUlJcvoQQ0asQyEEt/NcWdflKCxtqEUIhRN0W0ZydsrIyDhw44Pj+4MGD7Nq1i9TUVFq3bs3EiROZPn067dq1o23btkydOpWMjAzHjq3LLruMQYMGcddddzFv3jwqKysZP348o0aN0rwTSwgR3QpQ83Ms6K9wbEattiyEqNsiGuzs2LGDa665xvF9fn4+AGPGjGH+/Pk8+OCDnDlzhrvvvpuTJ0/Sq1cvVq5cSaJTZdmFCxcyfvx4+vfvj9lsZuTIkbz44othfy0iNKRtQvQLVQsH8J2I7I9UNxZC2EVNnZ1Ikjo70ed4URF7Fyzg8Nq1joaYLfv147IxY+p0Q8xoEooaN+5y0N/Cwc4EbDJwLEKI6BPzdXZE3VW8aBGrx4zhyLp1aqADYLNxZN06VuXmUrx4cWQHKEJW48ZZOWogFciMjpHVjY2oziyEiCwJdkRUOV5UxPbp00FRUKpdOxUp1dWgKGyfNo0fd+6M0AiFvxo3CmqNm81BnqeUwHJ0hqHO6IwN8vzOSdHpNf/mEPzrEkKEnwQ7IqrsXbAAk9n329JkNrN3wYIwjUi4C1eNmxS0/4IyAwcxrrpxOGauhBDhI8GOiBpVFRUcXru21oyOO6W6mu/XrKHKqSGsCA+tS0tG1LhJQp2l0dKUcwTQBmOSkcM1cyWECB8JdkTUqCwrO5+j44/Nph4vwkrP0pIRNW7yAd+hr3r/pCDP40yqMwsRfyTYEVEjITkZ/CxhOZjN6vEirPQuLQW7t7EXaqKxidozPEYnIkN4Z66EEOEjwY6IGtbERFr264fJ4vvvapPFQqv+/aXuTgToXVoyYllpLGrC8TDO/8IyMhHZWbhnroQQ4SHBjogqHXNzUfwsZSk2Gx1zc8M0IuEuEktL2aiJx2VACcYlIrsL98yVECI8JNgRUSUtM5OeU6eCyVRrhsdksYDJRM+pU6WwYASFe2nJWRLQnNBVRY7EzJUQIvQk2BFRp91NN3HtggW07NfvfA5PTQXlaxcsoN1NN0V2gCKsS0vhFomZKyFEaEm7CKRdRDST3ljRL5S9sSJlHur2cguuycpW1EBnLrEd0AkRL6RdhIgL1sREki68UAKdKBbqpaVIiOeZKyHqooh2PRdCiGiVXfMVjzNXQtQ1EuyIqCNLVyKaJCFBjhCxToIdETWOFxWxd8ECDq9dq1ZSrklKvmzMGNl9JYQQImCSsyOiQvGiRaweM4Yj69adbxlhs3Fk3TpW5eZSvHhxZAcohBAiZkmwIyLueFER26dPB0Wp1QRUqa4GRWH7tGn8uHNnhEYohBAilkmwIyJu74IFmPz0xDKZzexdsCBMIxJCCBFPJNgREVVVUcHhtWtrzei4U6qr+X7NGqoqKsI0MhGvyoFjSBNPIeoSCXZERFWWlZ3P0fHHZlOPFyIAhUAOkAyk1/ybA2yO5KCEEGEhwY6IqITk5PMtIfwxm9XjhdCpAOgDrOB8V3Nbzfe9USsmCyHilwQ7IqKsiYm07NevVtNPdyaLhVb9+0vdHaFbIZAHKLi2fqDmewW1NYTM8AgRvyTYERHXMTcXxc9SlmKz0TE3N0wjEvFkJmqPK18swKwwjEUIERkS7IiIS8vMpOfUqWAy1ZrhMVksYDLRc+pUKSwodCsHllN7RsddFbAUSVoWIl5JBWURFdrddBNN2rVj74IFfL9mjUsF5Y65uRLoiICUcj5Hxx9bzfHSGkKI+CPBjogazbp3p1n37tIbSxgmBXX6WkvAY645XggRf2QZS0Qda2IiSRdeKIGOCFoSMAz/f9VZgRHIrI4Q8UqCHSFEXMsHfJesVO+fFIaxCCEiQ4IdIURc6wXMBUzUnuGx1tw+F8gO87iEEOEjwY4QIu6NBTahLmnZf+mZa77fVHO/ECJ+SYKyEKJOyK75KkfddZWC5OgIUVdIsCOEqFOSkCBHiLpGlrGEEEIIEdck2BFCCCFEXJNgRwghhBBxTYIdIYQQQsQ1CXaEEEIIEdck2BFCCCFEXJNgRwghhBBxTYIdIYQQQsQ1CXaEEEIIEdeiOtiprq5m6tSptG3blqSkJC655BKmTZuGoiiOYxRF4bHHHqNFixYkJSUxYMAAiouLIzhqIYQQQkSTqA52nnnmGQoKCnj55ZfZs2cPzzzzDM8++ywvvfSS45hnn32WF198kXnz5rFt2zYaNmzIwIEDqaioiODIhRBCCBEtTIrzNEmUueGGG2jevDmvvfaa47aRI0eSlJTEv//9bxRFISMjg8mTJ3P//fcDcOrUKZo3b878+fMZNWqUpvOUlpbSuHFjTp06RUpKSkheixBCCCGMpfXzO6pndn73u9+xZs0a9u/fD8Dnn39OYWEhgwcPBuDgwYOUlJQwYMAAx2MaN27MlVdeyZYtW7w+77lz5ygtLXX5EkIIIUR8iuqu5w8//DClpaV07NgRi8VCdXU1f/3rXxk9ejQAJSUlADRv3tzlcc2bN3fc58mMGTN48sknQzdwIYQQQkSNqJ7Zeeutt1i4cCFvvvkmO3fu5I033uBvf/sbb7zxRlDPO2XKFE6dOuX4+v777w0asRBCCCGiTVTP7DzwwAM8/PDDjtybLl268N133zFjxgzGjBlDeno6AMeOHaNFixaOxx07dowrrrjC6/PWr1+f+vXrh3TsQgghhIgOUT2zc/bsWcxm1yFaLBZsNhsAbdu2JT09nTVr1jjuLy0tZdu2bWRlZYV1rEIIIYSITlE9szN06FD++te/0rp1a37zm9/w2WefMXPmTP70pz8BYDKZmDhxItOnT6ddu3a0bduWqVOnkpGRwfDhwyM7eCGEEEJEhagOdl566SWmTp3KuHHjOH78OBkZGfzlL3/hsccecxzz4IMPcubMGe6++25OnjxJr169WLlyJYmJiREcuRBCCCGiRVTX2QkXqbMjhBBCxJ64qLMjhBBCCBEsCXaEEEIIEdck2BFCCCFEXJNgRwghhBBxTYIdIYQQQsQ1CXaEEEIIEdck2BFCCCFEXJNgRwghhBBxTYIdIYQQQsQ1CXaEEEIIEdck2BFCAFBVUUH5Tz9RVVER6aEIIYShoroRqBAi9I4XFbF3wQIOr10LNhuYzbTs14/LxoyhWffukR6eEEIETWZ2hKjDihctYvWYMRxZt04NdABsNo6sW8eq3FyKFy+O7ACFEMIAEuwIUUcdLypi+/TpoCgo1dUu9ynV1aAobJ82jR937ozQCIUQwhgS7AhRR+1dsACT2fevAJPZzN4FC8I0IiGECA0JdoSog6oqKji8dm2tGR13SnU1369ZI0nLQoiYJsGOEHVQZVnZ+Rwdf2w29XghhIhREuwIUQclJCeDnyUsB7NZPV4IIWKUBDtC1EHWxERa9uuHyWLxeZzJYqFV//5YExPDNDIhhDCeBDtC1FEdc3NR/CxlKTYbHXNzwzQiIYQIDQl2hKij0jIz6Tl1KphMtWZ4TBYLmEz0nDpVCgsKIWKeVFAWog5rd9NNNGnXjr0LFvD9mjUuFZQ75uZKoCOEiAsS7AhRxzXr3p1m3btTVVFBZVkZCcnJkqMjhIgrEuwIIQA1aVmCHCFEPJKcHSGEEELENQl2hBBCCBHXJNgRQgghRFyTYEcIIYQQcU2CHSGEEELENQl2hBBCCBHXJNgRQgghRFyTYEcIIYQQcU2KCgKKogBQWloa4ZEIIYQQQiv757b9c9wbCXaA06dPA9CqVasIj0QIIYQQep0+fZrGjRt7vd+k+AuH6gCbzcbRo0dp1KgRJpMp0sMJudLSUlq1asX3339PSkpKpIcTE+Sa6SfXLDBy3fSTaxaYeLhuiqJw+vRpMjIyMJu9Z+bIzA5gNptp2bJlpIcRdikpKTH7Bo8UuWb6yTULjFw3/eSaBSbWr5uvGR07SVAWQgghRFyTYEcIIYQQcU2CnTqofv36PP7449SvXz/SQ4kZcs30k2sWGLlu+sk1C0xdum6SoCyEEEKIuCYzO0IIIYSIaxLsCCGEECKuSbAjhBBCiLgmwY4QQggh4poEO3Fi48aNDB06lIyMDEwmE8uWLXO5//bbb8dkMrl8DRo0yOWYEydOMHr0aFJSUmjSpAl33nknZWVlYXwV4TVjxgx69uxJo0aNSEtLY/jw4ezbt8/lmIqKCvLy8mjatCnJycmMHDmSY8eOuRxz6NAhhgwZQoMGDUhLS+OBBx6gqqoqnC8lbLRcs6uvvrrWe23s2LEux9SlawZQUFDA5Zdf7ijelpWVxUcffeS4X95ntfm7ZvI+8+/pp5/GZDIxceJEx2119b0mwU6cOHPmDF27dmXOnDlejxk0aBA//PCD4+s///mPy/2jR49m9+7drFq1ivfff5+NGzdy9913h3roEbNhwwby8vLYunUrq1atorKykuuuu44zZ844jpk0aRIrVqzg7bffZsOGDRw9epScnBzH/dXV1QwZMoRff/2VTz/9lDfeeIP58+fz2GOPReIlhZyWawZw1113ubzXnn32Wcd9de2aAbRs2ZKnn36aoqIiduzYQb9+/Rg2bBi7d+8G5H3mib9rBvI+82X79u288sorXH755S6319n3miLiDqAsXbrU5bYxY8Yow4YN8/qYr7/+WgGU7du3O2776KOPFJPJpBw5ciREI40ux48fVwBlw4YNiqIoysmTJ5WEhATl7bffdhyzZ88eBVC2bNmiKIqifPjhh4rZbFZKSkocxxQUFCgpKSnKuXPnwvsCIsD9mimKovTt21eZMGGC18fU9Wtmd8EFFyj/+Mc/5H2mg/2aKYq8z3w5ffq00q5dO2XVqlUu16kuv9dkZqcOWb9+PWlpaXTo0IF77rmHn3/+2XHfli1baNKkCT169HDcNmDAAMxmM9u2bYvEcMPu1KlTAKSmpgJQVFREZWUlAwYMcBzTsWNHWrduzZYtWwD1unXp0oXmzZs7jhk4cCClpaUuf4HGK/drZrdw4UIuvPBCOnfuzJQpUzh79qzjvrp+zaqrq1m0aBFnzpwhKytL3mcauF8zO3mfeZaXl8eQIUNc3lNQt3+nSSPQOmLQoEHk5OTQtm1bvvnmGx555BEGDx7Mli1bsFgslJSUkJaW5vIYq9VKamoqJSUlERp1+NhsNiZOnEh2djadO3cGoKSkhHr16tGkSROXY5s3b+64JiUlJS6/FOz32++LZ56uGcAtt9zCRRddREZGBl988QUPPfQQ+/bt49133wXq7jX78ssvycrKoqKiguTkZJYuXUqnTp3YtWuXvM+88HbNQN5n3ixatIidO3eyffv2WvfV5d9pEuzUEaNGjXL8d5cuXbj88su55JJLWL9+Pf3794/gyKJDXl4eX331FYWFhZEeSszwds2c87y6dOlCixYt6N+/P9988w2XXHJJuIcZNTp06MCuXbs4deoUS5YsYcyYMWzYsCHSw4pq3q5Zp06d5H3mwffff8+ECRNYtWoViYmJkR5OVJFlrDrq4osv5sILL+TAgQMApKenc/z4cZdjqqqqOHHiBOnp6ZEYYtiMHz+e999/n3Xr1tGyZUvH7enp6fz666+cPHnS5fhjx445rkl6enqtnQz27+P5unm7Zp5ceeWVAC7vtbp4zerVq8ell15KZmYmM2bMoGvXrsyePVveZz54u2aeyPtMXaY6fvw43bt3x2q1YrVa2bBhAy+++CJWq5XmzZvX2feaBDt11OHDh/n5559p0aIFAFlZWZw8eZKioiLHMWvXrsVmszl+icQbRVEYP348S5cuZe3atbRt29bl/szMTBISElizZo3jtn379nHo0CFH3kBWVhZffvmlS6C4atUqUlJSHNPt8cTfNfNk165dAC7vtbp0zbyx2WycO3dO3mc62K+ZJ/I+g/79+/Pll1+ya9cux1ePHj0YPXq047/r7Hst0hnSwhinT59WPvvsM+Wzzz5TAGXmzJnKZ599pnz33XfK6dOnlfvvv1/ZsmWLcvDgQWX16tVK9+7dlXbt2ikVFRWO5xg0aJDSrVs3Zdu2bUphYaHSrl075eabb47gqwqte+65R2ncuLGyfv165YcffnB8nT171nHM2LFjldatWytr165VduzYoWRlZSlZWVmO+6uqqpTOnTsr1113nbJr1y5l5cqVSrNmzZQpU6ZE4iWFnL9rduDAAeWpp55SduzYoRw8eFBZvny5cvHFFyt9+vRxPEddu2aKoigPP/ywsmHDBuXgwYPKF198oTz88MOKyWRSPvnkE0VR5H3mia9rJu8z7dx3rdXV95oEO3Fi3bp1ClDra8yYMcrZs2eV6667TmnWrJmSkJCgXHTRRcpdd93lsrVQURTl559/Vm6++WYlOTlZSUlJUe644w7l9OnTEXpFoefpegHK66+/7jimvLxcGTdunHLBBRcoDRo0UEaMGKH88MMPLs/z7bffKoMHD1aSkpKUCy+8UJk8ebJSWVkZ5lcTHv6u2aFDh5Q+ffooqampSv369ZVLL71UeeCBB5RTp065PE9dumaKoih/+tOflIsuukipV6+e0qxZM6V///6OQEdR5H3mia9rJu8z7dyDnbr6XjMpiqKEezZJCCGEECJcJGdHCCGEEHFNgh0hhBBCxDUJdoQQQggR1yTYEUIIIURck2BHCCGEEHFNgh0hhBBCxDUJdoQQQggR1yTYEUIIIURck2BHCBFxt99+O8OHD4/0MIQQcUqCHSGEEELENQl2hBBR5eqrr+a+++7jwQcfJDU1lfT0dJ544gmXY06ePMlf/vIXmjdvTmJiIp07d+b999933P/OO+/wm9/8hvr169OmTRuef/55l8e3adOG6dOnk5ubS3JyMhdddBHvvfceP/74I8OGDSM5OZnLL7+cHTt2uDyusLCQ3r17k5SURKtWrbjvvvs4c+ZMyK6FEMIYEuwIIaLOG2+8QcOGDdm2bRvPPvssTz31FKtWrQLAZrMxePBgNm/ezL///W++/vprnn76aSwWCwBFRUXceOONjBo1ii+//JInnniCqVOnMn/+fJdzzJo1i+zsbD777DOGDBnCbbfdRm5uLrfeeis7d+7kkksuITc3F3v7wG+++YZBgwYxcuRIvvjiCxYvXkxhYSHjx48P67URQugnjUCFEBF3++23c/LkSZYtW8bVV19NdXU1mzZtctz/29/+ln79+vH000/zySefMHjwYPbs2UP79u1rPdfo0aP58ccf+eSTTxy3Pfjgg3zwwQfs3r0bUGd2evfuzb/+9S8ASkpKaNGiBVOnTuWpp54CYOvWrWRlZfHDDz+Qnp7On//8ZywWC6+88orjeQsLC+nbty9nzpwhMTExJNdGCBE8mdkRQkSdyy+/3OX7Fi1acPz4cQB27dpFy5YtPQY6AHv27CE7O9vltuzsbIqLi6murvZ4jubNmwPQpUuXWrfZz/v5558zf/58kpOTHV8DBw7EZrNx8ODBQF+qECIMrJEegBBCuEtISHD53mQyYbPZAEhKSjL8HCaTyett9vOWlZXxl7/8hfvuu6/Wc7Vu3dqQMQkhQkOCHSFETLn88ss5fPgw+/fv9zi7c9lll7F582aX2zZv3kz79u0deT2B6N69O19//TWXXnppwM8hhIgMWcYSQsSUvn370qdPH0aOHMmqVas4ePAgH330EStXrgRg8uTJrFmzhmnTprF//37eeOMNXn75Ze6///6gzvvQQw/x6aefMn78eHbt2kVxcTHLly+XBGUhYoAEO0KImPPOO+/Qs2dPbr75Zjp16sSDDz7oyMfp3r07b731FosWLaJz58489thjPPXUU9x+++1BnfPyyy9nw4YN7N+/n969e9OtWzcee+wxMjIyDHhFQohQkt1YQgghhIhrMrMjhBBCiLgmwY4QQggh4poEO0IIIYSIaxLsCCGEECKuSbAjhBBCiLgmwY4QQggh4poEO0IIIYSIaxLsCCGEECKuSbAjhBBCiLgmwY4QQggh4poEO0IIIYSIaxLsCCGEECKu/f/x0op7nMcbogAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
}
]
}