DeepSeek-Coder/Evaluation/HumanEval/eval_pal.py
2023-11-02 22:07:09 +08:00

43 lines
1.4 KiB
Python

import os
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import json
import torch.distributed as dist
import subprocess
import sys
from accelerate import Accelerator
from accelerate import DistributedDataParallelKwargs
from pathlib import Path
from argparse import ArgumentParser
from humaneval import HumanEval as evaltor
from transformers import AutoTokenizer, AutoModelForCausalLM
if __name__ == '__main__':
kwargs_handlers = [DistributedDataParallelKwargs(find_unused_parameters=True)]
accelerator = Accelerator(mixed_precision="bf16", kwargs_handlers=kwargs_handlers)
parser = ArgumentParser()
parser.add_argument("--logdir", type=str, default="")
parser.add_argument("--language", type=str, default="")
parser.add_argument("--dataroot", type=str, default="")
args = parser.parse_args()
logdir = args.logdir
language = args.language
if logdir == "":
logdir = "tmp/"
tokenizer = dict(
cls=AutoTokenizer,
model_path=logdir,)
dataroot = args.dataroot
evaluator = evaltor(data_root=dataroot, max_seq_len=4096, tokenizer_cfg=tokenizer, log_dir=logdir, n_sample=1, batch_size=1, language=language, max_gen_len=500)
model = AutoModelForCausalLM.from_pretrained(logdir, device_map=accelerator.device, trust_remote_code=True, torch_dtype=torch.bfloat16)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
evaluator.eval_model(model, accelerator)