mirror of
https://github.com/deepseek-ai/DeepSeek-Coder
synced 2024-12-04 18:14:44 +00:00
130 lines
4.7 KiB
Python
130 lines
4.7 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import torch
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
|
|
data_abs_dir = Path(__file__).parent / "data"
|
|
|
|
from utils.utils import extract_generation_code, languge_settings
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
from human_eval.evaluation import evaluate_functional_correctness
|
|
|
|
def build_deepseekcoder_instruction(languge: str, question: str):
|
|
return '''
|
|
Please continue to complete the function. You are not allowed to modify the given code and do the completion only. Please return all completed function in a codeblock. Here is the given code to do completion:
|
|
```{}
|
|
{}
|
|
```
|
|
'''.strip().format(languge.lower(), question.strip())
|
|
|
|
def generate_one(example, lang, tokenizer, model):
|
|
prompt = build_deepseekcoder_instruction(languge_settings[lang]['full_name'], example['prompt'])
|
|
inputs = tokenizer.apply_chat_template(
|
|
[{'role': 'user', 'content': prompt }],
|
|
return_tensors="pt",
|
|
add_generation_prompt=True
|
|
).to(model.device)
|
|
|
|
stop_id = tokenizer.convert_tokens_to_ids("<|EOT|>")
|
|
assert isinstance(stop_id, int), "Invalid tokenizer, EOT id not found"
|
|
|
|
outputs = model.generate(
|
|
inputs,
|
|
max_new_tokens=1024,
|
|
do_sample=False,
|
|
# top_p=0.95,
|
|
# temperature=temperature,
|
|
pad_token_id=stop_id,
|
|
eos_token_id=stop_id
|
|
)
|
|
|
|
output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
|
example['output'] = output
|
|
|
|
return extract_generation_code(example, lang_code=lang)
|
|
|
|
def generate_main(args):
|
|
model_name_or_path = args.model
|
|
lang = args.language
|
|
saved_path = args.output_path
|
|
temp_dir = args.temp_dir
|
|
os.makedirs(temp_dir, exist_ok=True)
|
|
problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl")
|
|
|
|
print("model", model_name_or_path)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
|
print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path))
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name_or_path,
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
#use_flash_attention_2=True
|
|
)
|
|
model.eval()
|
|
examples = [json.loads(x) for x in open(problem_file) if x.strip()]
|
|
print("Read {} examples for evaluation over.".format(len(examples)))
|
|
|
|
generated_examples = []
|
|
for ex in tqdm(examples, desc='Generating'):
|
|
gen_example = generate_one(ex, args.language, tokenizer, model)
|
|
generated_examples.append(gen_example)
|
|
|
|
print("Generate all over!!!")
|
|
with open(saved_path, 'w', encoding='utf-8') as fw:
|
|
for ex in generated_examples:
|
|
fw.write(json.dumps(ex) + '\n')
|
|
print("Save {} processed examples into {} over!".format(len(generated_examples), saved_path))
|
|
|
|
result = evaluate_functional_correctness(
|
|
input_file=saved_path,
|
|
tmp_dir=temp_dir,
|
|
n_workers=8,
|
|
timeout=3.0,
|
|
problem_file=problem_file,
|
|
language=lang
|
|
)
|
|
print(lang, result, model_name_or_path)
|
|
pass
|
|
|
|
def evaluation_only(args):
|
|
lang = args.language
|
|
temp_dir = args.temp_dir
|
|
assert os.path.exists(args.output_path), "Not fond output file: {}".format(args.output_path)
|
|
os.makedirs(temp_dir, exist_ok=True)
|
|
|
|
output_name = os.path.basename(args.output_path)
|
|
output_examples = [json.loads(x) for x in open(args.output_path) if x.strip()]
|
|
|
|
processed_examples = [extract_generation_code(ex, lang) for ex in tqdm(output_examples, "Processing")]
|
|
processed_path = os.path.join(temp_dir, output_name)
|
|
with open(processed_path, 'w', encoding='utf-8') as fw:
|
|
for ex in processed_examples:
|
|
fw.write(json.dumps(ex) + '\n')
|
|
print("Save {} processed examples into {} over!".format(len(processed_examples), processed_path))
|
|
|
|
problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl")
|
|
from human_eval.evaluation import evaluate_functional_correctness
|
|
result = evaluate_functional_correctness(
|
|
input_file=processed_path,
|
|
tmp_dir=temp_dir,
|
|
n_workers=8,
|
|
timeout=3.0,
|
|
problem_file=problem_file,
|
|
language=lang
|
|
)
|
|
print(lang, result)
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model', type=str, help="model name or path")
|
|
parser.add_argument('--output_path', type=str, help="output path of your generation")
|
|
parser.add_argument('--language', type=str, help="langauge")
|
|
parser.add_argument('--temp_dir', type=str, help="temp dir for evaluation", default="tmp")
|
|
args = parser.parse_args()
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
generate_main(args)
|
|
pass
|