import argparse import json import os import torch from pathlib import Path from tqdm import tqdm data_abs_dir = Path(__file__).parent / "data" from utils.utils import extract_generation_code, languge_settings from transformers import AutoTokenizer, AutoModelForCausalLM from human_eval.evaluation import evaluate_functional_correctness def build_deepseekcoder_instruction(languge: str, question: str): return ''' Please continue to complete the function. You are not allowed to modify the given code and do the completion only. Please return all completed function in a codeblock. Here is the given code to do completion: ```{} {} ``` '''.strip().format(languge.lower(), question.strip()) def generate_one(example, lang, tokenizer, model): prompt = build_deepseekcoder_instruction(languge_settings[lang]['full_name'], example['prompt']) inputs = tokenizer.apply_chat_template( [{'role': 'user', 'content': prompt }], return_tensors="pt" ).to(model.device) stop_id = tokenizer.convert_tokens_to_ids("<|EOT|>") assert isinstance(stop_id, int), "Invalid tokenizer, EOT id not found" outputs = model.generate( inputs, max_new_tokens=1024, do_sample=False, # top_p=0.95, # temperature=temperature, pad_token_id=stop_id, eos_token_id=stop_id ) output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) example['output'] = output return extract_generation_code(example, lang_code=lang) def generate_main(args): model_name_or_path = args.model lang = args.language saved_path = args.output_path temp_dir = args.temp_dir os.makedirs(temp_dir, exist_ok=True) problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl") print("model", model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path)) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, torch_dtype=torch.bfloat16, device_map="auto", #use_flash_attention_2=True ) model.eval() examples = [json.loads(x) for x in open(problem_file) if x.strip()] print("Read {} examples for evaluation over.".format(len(examples))) generated_examples = [] for ex in tqdm(examples, desc='Generating'): gen_example = generate_one(ex, lang, tokenizer, model) generated_examples.append(gen_example) print("Generate all over!!!") with open(saved_path, 'w', encoding='utf-8') as fw: for ex in generated_examples: fw.write(json.dumps(ex) + '\n') print("Save {} processed examples into {} over!".format(len(generated_examples), saved_path)) result = evaluate_functional_correctness( input_file=saved_path, tmp_dir=temp_dir, n_workers=8, timeout=3.0, problem_file=problem_file, language=lang ) print(lang, result, model_name_or_path) pass def evaluation_only(args): lang = args.language temp_dir = args.temp_dir assert os.path.exists(args.output_path), "Not fond output file: {}".format(args.output_path) os.makedirs(temp_dir, exist_ok=True) output_name = os.path.basename(args.output_path) output_examples = [json.loads(x) for x in open(args.output_path) if x.strip()] processed_examples = [extract_generation_code(ex, lang) for ex in tqdm(output_examples, "Processing")] processed_path = os.path.join(temp_dir, output_name) with open(processed_path, 'w', encoding='utf-8') as fw: for ex in processed_examples: fw.write(json.dumps(ex) + '\n') print("Save {} processed examples into {} over!".format(len(processed_examples), processed_path)) problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl") from human_eval.evaluation import evaluate_functional_correctness result = evaluate_functional_correctness( input_file=processed_path, tmp_dir=temp_dir, n_workers=8, timeout=3.0, problem_file=problem_file, language=lang ) print(lang, result) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, help="model name or path") parser.add_argument('--output_path', type=str, help="output path of your generation") parser.add_argument('--language', type=str, help="langauge") parser.add_argument('--temp_dir', type=str, help="temp dir for evaluation", default="tmp") args = parser.parse_args() os.environ["TOKENIZERS_PARALLELISM"] = "false" generate_main(args) pass