import copy import random import logging from dataclasses import dataclass, field from typing import Optional, Dict, Sequence import torch import torch.distributed from transformers import Trainer, AutoTokenizer, AutoModelForCausalLM, HfArgumentParser, TrainingArguments from datasets import load_dataset IGNORE_INDEX = -100 EOT_TOKEN = "<|EOT|>" LOGGING_FORMAT = '%(asctime)s - %(levelname)s - %(message)s' # Set up logging logging.basicConfig(level=logging.INFO, format=LOGGING_FORMAT) def build_instruction_prompt(instruction: str) -> str: """ Build a formatted instruction prompt for the model to respond to. """ return f''' You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer. ### Instruction: {instruction.strip()} ### Response: '''.lstrip() @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="deepseek-ai/deepseek-coder-6.7b-instruct") @dataclass class DataArguments: data_path: str = field(default=None, metadata={"help": "Path to the training data."}) @dataclass class CustomTrainingArguments(TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") model_max_length: int = field( default=512, metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}, ) def safe_save_model(trainer: Trainer, output_dir: str): """ Collects the state dict and saves it to disk. """ state_dict = trainer.model.state_dict() if trainer.args.should_save: cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} trainer._save(output_dir, state_dict=cpu_state_dict) logging.info(f"Model saved to {output_dir}") def tokenize_texts(strings: Sequence[str], tokenizer: AutoTokenizer) -> Dict: """ Tokenize a list of strings. """ tokenized_list = [ tokenizer( text, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ) for text in strings ] input_ids = [tokenized.input_ids[0] for tokenized in tokenized_list] input_ids_lens = [ tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list ] return dict( input_ids=input_ids, input_ids_lens=input_ids_lens, ) def preprocess_data( sources: Sequence[str], targets: Sequence[str], tokenizer: AutoTokenizer, ) -> Dict: """ Preprocess the data by tokenizing it and preparing the labels. """ examples = [s + t for s, t in zip(sources, targets)] examples_tokenized, sources_tokenized = [tokenize_texts(strings, tokenizer) for strings in (examples, sources)] input_ids = examples_tokenized["input_ids"] labels = copy.deepcopy(input_ids) for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]): label[:source_len] = IGNORE_INDEX return dict(input_ids=input_ids, labels=labels) @dataclass class DataCollatorForSupervisedDataset: """ Collator for supervised fine-tuning. """ tokenizer: AutoTokenizer def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) input_ids = torch.nn.utils.rnn.pad_sequence([torch.tensor(x) for x in input_ids], batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = torch.nn.utils.rnn.pad_sequence([torch.tensor(x) for x in labels], batch_first=True, padding_value=IGNORE_INDEX) return dict( input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), ) def tokenize_for_training(examples, tokenizer): """ Tokenize the examples for training. """ sources = [build_instruction_prompt(instruction) for instruction in examples['instruction']] targets = [f"{output}\n{EOT_TOKEN}" for output in examples['output']] return preprocess_data(sources, targets, tokenizer) def train(): """ Main training loop. """ parser = HfArgumentParser((ModelArguments, DataArguments, CustomTrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Initialize tokenizer and model tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, model_max_length=training_args.model_max_length, padding_side="right", use_fast=True, trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, torch_dtype=torch.bfloat16) # Load dataset raw_train_datasets = load_dataset('json', data_files=data_args.data_path, split="train", cache_dir=training_args.cache_dir) train_dataset = raw_train_datasets.map( tokenize_for_training, batched=True, batch_size=3000, num_proc=32, remove_columns=raw_train_datasets.column_names, desc="Tokenizing", fn_kwargs={"tokenizer": tokenizer} ) logging.info(f"Loaded dataset with {len(train_dataset)} samples.") data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, train_dataset=train_dataset, data_collator=data_collator) # Start training trainer.train() trainer.save_state() safe_save_model(trainer, training_args.output_dir) if __name__ == "__main__": train()