mirror of
https://github.com/deepseek-ai/DeepSeek-Coder
synced 2024-12-04 18:14:44 +00:00
update eval_instruct.py
This commit is contained in:
parent
4f0b860d30
commit
f911009816
@ -7,22 +7,20 @@ from tqdm import tqdm
|
||||
|
||||
data_abs_dir = Path(__file__).parent / "data"
|
||||
|
||||
from utils.utils import extract_generation_code
|
||||
from utils.utils import extract_generation_code, languge_settings
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from human_eval.evaluation import evaluate_functional_correctness
|
||||
|
||||
def build_deepseekcoder_instruction(languge: str, question: str):
|
||||
return '''
|
||||
Please help me to complete the function. Use the given packages only and DO NOT refer any new package. Please return all completed function in a codeblock.
|
||||
Here is the given code to do completion:
|
||||
Please continue to complete the function. You are not allowed to modify the given code and do the completion only. Please return all completed function in a codeblock. Here is the given code to do completion:
|
||||
```{}
|
||||
{}
|
||||
```
|
||||
'''.strip().format(languge.lower(), question)
|
||||
|
||||
'''.strip().format(languge.lower(), question.strip())
|
||||
|
||||
def generate_one(example, lang, tokenizer, model):
|
||||
prompt = build_deepseekcoder_instruction(lang, example['prompt'])
|
||||
prompt = build_deepseekcoder_instruction(languge_settings[lang]['full_name'], example['prompt'])
|
||||
inputs = tokenizer.apply_chat_template(
|
||||
[{'role': 'user', 'content': prompt }],
|
||||
return_tensors="pt"
|
||||
@ -33,11 +31,14 @@ def generate_one(example, lang, tokenizer, model):
|
||||
|
||||
outputs = model.generate(
|
||||
inputs,
|
||||
max_new_tokens=512,
|
||||
do_sample=False,
|
||||
top_p=0.95,
|
||||
max_new_tokens=1024,
|
||||
do_sample=False,
|
||||
# top_p=0.95,
|
||||
# temperature=temperature,
|
||||
pad_token_id=stop_id,
|
||||
eos_token_id=stop_id
|
||||
)
|
||||
|
||||
output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
||||
example['output'] = output
|
||||
|
||||
@ -49,17 +50,18 @@ def generate_main(args):
|
||||
saved_path = args.output_path
|
||||
temp_dir = args.temp_dir
|
||||
os.makedirs(temp_dir, exist_ok=True)
|
||||
problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl")
|
||||
|
||||
print("model", model_name_or_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
||||
print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path))
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name_or_path,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="cuda"
|
||||
device_map="auto",
|
||||
#use_flash_attention_2=True
|
||||
)
|
||||
|
||||
model.eval()
|
||||
problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl")
|
||||
examples = [json.loads(x) for x in open(problem_file) if x.strip()]
|
||||
print("Read {} examples for evaluation over.".format(len(examples)))
|
||||
|
||||
@ -67,7 +69,7 @@ def generate_main(args):
|
||||
for ex in tqdm(examples, desc='Generating'):
|
||||
gen_example = generate_one(ex, lang, tokenizer, model)
|
||||
generated_examples.append(gen_example)
|
||||
|
||||
|
||||
print("Generate all over!!!")
|
||||
with open(saved_path, 'w', encoding='utf-8') as fw:
|
||||
for ex in generated_examples:
|
||||
|
Loading…
Reference in New Issue
Block a user