diff --git a/14_Stock_prediction_using_SVM_REGRESSION.ipynb b/14_Stock_prediction_using_SVM_REGRESSION.ipynb new file mode 100644 index 0000000..3212dbe --- /dev/null +++ b/14_Stock_prediction_using_SVM_REGRESSION.ipynb @@ -0,0 +1,1045 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NdHIE4CSDCp3" + }, + "source": [ + "# **Day-14 | Stock Prediction using SUPPORT VECTOR REGRESSION**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1NTrKL3eIgZ8" + }, + "source": [ + "### *Importing Libraries*" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ae6Pxuc-CNeu" + }, + "source": [ + "import pandas as pd\n", + "import numpy as np" + ], + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6oo4HsbHInXM" + }, + "source": [ + "### *Load Dataset from Local directory*" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "w0WCVounIsJ5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 73 + }, + "outputId": "72f5c938-c267-41f9-ee2a-6d6563b5664f" + }, + "source": [ + "from google.colab import files\n", + "uploaded = files.upload()" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + " \n", + " Upload widget is only available when the cell has been executed in the\n", + " current browser session. Please rerun this cell to enable.\n", + " \n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving data.csv to data.csv\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NHijCKx7I0k8" + }, + "source": [ + "### *Load Dataset*" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "zxBak91bI2yh" + }, + "source": [ + "dataset = pd.read_csv('data.csv')" + ], + "execution_count": 3, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5XKSRUPWI5Q-" + }, + "source": [ + "### *Summarize Dataset*" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "63BR2xiKI7oZ", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "7bcfc903-7216-4aa7-c079-b13837f2fb72" + }, + "source": [ + "print(dataset.shape)\n", + "print(dataset.head(5))" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(94, 2)\n", + " x y\n", + "0 168.181818 160.840244\n", + "1 187.878788 159.413657\n", + "2 207.575758 157.136809\n", + "3 227.272727 159.357847\n", + "4 246.969697 157.542862\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zv8cn1g8Jix-" + }, + "source": [ + "### *Segregate Dataset into Input X & Output Y*" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "iR3g4pDjJoj9", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a0374808-f07f-487b-d913-fa21394a2d3d" + }, + "source": [ + "X = dataset.iloc[:, :-1].values\n", + "X" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[ 168.18181818],\n", + " [ 187.87878788],\n", + " [ 207.57575758],\n", + " [ 227.27272727],\n", + " [ 246.96969697],\n", + " [ 266.66666667],\n", + " [ 286.36363636],\n", + " [ 306.06060606],\n", + " [ 325.75757576],\n", + " [ 345.45454545],\n", + " [ 365.15151515],\n", + " [ 384.84848485],\n", + " [ 404.54545455],\n", + " [ 424.24242424],\n", + " [ 443.93939394],\n", + " [ 463.63636364],\n", + " [ 483.33333333],\n", + " [ 503.03030303],\n", + " [ 522.72727273],\n", + " [ 542.42424242],\n", + " [ 562.12121212],\n", + " [ 581.81818182],\n", + " [ 601.51515152],\n", + " [ 621.21212121],\n", + " [ 640.90909091],\n", + " [ 660.60606061],\n", + " [ 680.3030303 ],\n", + " [ 700. ],\n", + " [ 719.6969697 ],\n", + " [ 739.39393939],\n", + " [ 759.09090909],\n", + " [ 778.78787879],\n", + " [ 798.48484848],\n", + " [ 818.18181818],\n", + " [ 837.87878788],\n", + " [ 857.57575758],\n", + " [ 877.27272727],\n", + " [ 896.96969697],\n", + " [ 916.66666667],\n", + " [ 936.36363636],\n", + " [ 956.06060606],\n", + " [ 975.75757576],\n", + " [ 995.45454545],\n", + " [1015.15151515],\n", + " [1034.84848485],\n", + " [1054.54545455],\n", + " [1074.24242424],\n", + " [1093.93939394],\n", + " [1113.63636364],\n", + " [1133.33333333],\n", + " [1153.03030303],\n", + " [1172.72727273],\n", + " [1192.42424242],\n", + " [1212.12121212],\n", + " [1231.81818182],\n", + " [1251.51515152],\n", + " [1271.21212121],\n", + " [1290.90909091],\n", + " [1310.60606061],\n", + " [1330.3030303 ],\n", + " [1350. ],\n", + " [1369.6969697 ],\n", + " [1389.39393939],\n", + " [1409.09090909],\n", + " [1428.78787879],\n", + " [1448.48484848],\n", + " [1468.18181818],\n", + " [1487.87878788],\n", + " [1507.57575758],\n", + " [1527.27272727],\n", + " [1546.96969697],\n", + " [1566.66666667],\n", + " [1586.36363636],\n", + " [1606.06060606],\n", + " [1625.75757576],\n", + " [1645.45454545],\n", + " [1665.15151515],\n", + " [1684.84848485],\n", + " [1704.54545455],\n", + " [1724.24242424],\n", + " [1743.93939394],\n", + " [1763.63636364],\n", + " [1783.33333333],\n", + " [1803.03030303],\n", + " [1822.72727273],\n", + " [1842.42424242],\n", + " [1862.12121212],\n", + " [1881.81818182],\n", + " [1901.51515152],\n", + " [1921.21212121],\n", + " [1940.90909091],\n", + " [1960.60606061],\n", + " [1980.3030303 ],\n", + " [2000. ]])" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "LyJ8ghMFKcMe", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "1ffa4118-7ce7-47fe-c462-1b63f2830057" + }, + "source": [ + "Y = dataset.iloc[:, -1].values\n", + "Y" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([160.84024381, 159.41365734, 157.1368088 , 159.35784736,\n", + " 157.54286158, 157.73520716, 159.34756091, 155.23404557,\n", + " 155.80774009, 158.3299704 , 157.62585291, 160.47697951,\n", + " 158.22940639, 157.41781684, 163.37069148, 160.18481104,\n", + " 160.96838974, 158.18080666, 160.13850728, 161.6460876 ,\n", + " 159.31922497, 162.56957785, 160.81387414, 161.62873371,\n", + " 161.20567768, 166.31061698, 162.77603585, 160.88457814,\n", + " 164.84205952, 160.95225209, 164.00863628, 159.86853854,\n", + " 161.32847639, 164.57554065, 165.85572104, 164.91849414,\n", + " 164.54143071, 164.36748958, 162.20962269, 163.92394795,\n", + " 164.63932852, 167.87182021, 166.64178203, 162.62543484,\n", + " 166.99665279, 165.77528998, 165.38858024, 168.16274652,\n", + " 169.19836268, 169.19589357, 165.85186798, 167.10884798,\n", + " 168.58676929, 170.07230238, 167.35983334, 168.14383356,\n", + " 166.49945126, 166.51667766, 170.73111225, 172.01551036,\n", + " 169.35597976, 171.70403549, 170.61721144, 168.80066958,\n", + " 171.01067 , 173.56092162, 170.6101661 , 174.00807519,\n", + " 165.83626737, 172.91653228, 171.64379111, 171.06865197,\n", + " 172.04715792, 168.08546823, 171.81823198, 173.1687706 ,\n", + " 175.60730324, 171.81194441, 171.42846734, 172.23891016,\n", + " 175.27019817, 174.29386586, 172.77381293, 175.0568379 ,\n", + " 174.42142783, 176.36153241, 173.21710593, 174.16285752,\n", + " 174.23093521, 172.28509132, 176.00133146, 176.12817115,\n", + " 175.81325722, 175.53082573])" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z5kccmBcw1PQ" + }, + "source": [ + "### *Splitting Dataset for Testing our Model*" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Pc4kGEuDw36Q" + }, + "source": [ + "from sklearn.model_selection import train_test_split\n", + "x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.20,random_state=0)" + ], + "execution_count": 7, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XP-L6ZRyL30I" + }, + "source": [ + "### *Training Dataset using Support Vector Regression*" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "c4x1C89ZVjr9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "outputId": "7713001d-363a-449f-8ccb-b224e7435310" + }, + "source": [ + "from sklearn.svm import SVR\n", + "model = SVR()\n", + "model.fit(x_train,y_train)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVR()" + ], + "text/html": [ + "
SVR()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4YOj1wVjerek" + }, + "source": [ + "### *Prediction for all test data for validation*\n", + "### *SSres is the sum of squares of the residual errors.*\n", + "### *SStot is the total sum of the errors.*\n", + "# ![image.png]()" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "mt_Z7EDqWhdB", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "869e495f-65a3-43e1-c195-e201aad9217f" + }, + "source": [ + "ypred = model.predict(x_test)\n", + "\n", + "from sklearn.metrics import r2_score,mean_squared_error\n", + "mse = mean_squared_error(y_test,ypred)\n", + "rmse=np.sqrt(mse)\n", + "print(\"Root Mean Square Error:\",rmse)\n", + "r2score = r2_score(y_test,ypred)\n", + "print(\"R2Score\",r2score*100)" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Root Mean Square Error: 2.3594718844452056\n", + "R2Score 86.64242653738367\n" + ] + } + ] + } + ] +} \ No newline at end of file