diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..2cb1128 --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +__pycache__/ +Evaluation/MBPP/eval_instruct.sh \ No newline at end of file diff --git a/Evaluation/MBPP/eval_instruct.py b/Evaluation/MBPP/eval_instruct.py new file mode 100644 index 0000000..3a604ae --- /dev/null +++ b/Evaluation/MBPP/eval_instruct.py @@ -0,0 +1,141 @@ +import argparse +import json +import os +import torch +import re +from pathlib import Path +from tqdm import tqdm + +data_abs_dir = Path(__file__).parent / "data" + +from transformers import AutoTokenizer, AutoModelForCausalLM +from human_eval.evaluation import evaluate_functional_correctness + +def read_test_examples(data_path: str): + def format_test_example(q, tests, code: str=None): + prompt = ">>> Problem:\n{}\n>>> Test Cases:\n{}\n".format(q.strip(), "\n".join(tests)) + if code: + code = code.replace("\r", "").replace("\t", " ") + prompt += "\n>>> Code:\n```python\n{}\n```".format(code) + return prompt + + examples = [json.loads(x) for x in open(data_path)] + print("Read all {} examples from {} over!".format(len(examples), data_path)) + + # test_cases + examples_str = [] + for i in range(1, 4): + ex = examples[i] + q, test, code = ex['text'], ex['test_list'], ex['code'] + ex_prompt = format_test_example(q, test, code) + example_prompt = '- Example {}:\n{}'.format(i, ex_prompt) + examples_str += [example_prompt] + + for i in range(10, 510): + ex = examples[i] + q, test, code = ex['text'], ex['test_list'], ex['code'] + + prompt = format_test_example(q, test, code=None) + + prompt_with_shots = ''' +Please refer the given examples and generate a python function for my problem. +Examples are listed as follows: +{} + +Here is my problem: +{} +'''.strip().format('\n\n'.join(examples_str), prompt) + yield { + 'task_id': ex['task_id'], + 'prompt': prompt_with_shots + } + +def convert_for_evaluation(example): + gpt_completion = example['gpt_completion'] + generation = gpt_completion + try: + code_block: str = re.findall(f'```python\n(.*?)```', gpt_completion, re.DOTALL | re.IGNORECASE)[0] + generation = code_block + except Exception as ex: + print("Failed to extract codeblock:\n{}".format(gpt_completion)) + + example['generation'] = generation + return example + +def generate_one(example, tokenizer, model): + prompt = example['prompt'] + inputs = tokenizer.apply_chat_template( + [{'role': 'user', 'content': prompt }], + return_tensors="pt" + ).to(model.device) + + stop_id = tokenizer.convert_tokens_to_ids("<|EOT|>") + assert isinstance(stop_id, int), "Invalid tokenizer, EOT id not found" + + outputs = model.generate( + inputs, + max_new_tokens=1024, + do_sample=False, + # top_p=0.95, + # temperature=temperature, + pad_token_id=stop_id, + eos_token_id=stop_id + ) + + output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) + example['gpt_completion'] = output + + return convert_for_evaluation(example) + +def generate_main(args): + model_name_or_path = args.model + saved_path = args.output_path + temp_dir = args.temp_dir + os.makedirs(temp_dir, exist_ok=True) + problem_file = os.path.join(data_abs_dir, f"mbpp.jsonl") + + print("model", model_name_or_path) + tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) + print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path)) + model = AutoModelForCausalLM.from_pretrained( + model_name_or_path, + torch_dtype=torch.bfloat16, + device_map="auto", + ) + model.eval() + + examples = list(read_test_examples(problem_file)) + print("Read {} examples for evaluation over.".format(len(examples))) + + generated_examples = [] + for ex in tqdm(examples, desc='Generating'): + gen_example = generate_one(ex, tokenizer, model) + generated_examples.append(gen_example) + print("Generate {}/{} over...".format(len(generated_examples), len(examples))) + + print("Generate all over!!!") + with open(saved_path, 'w', encoding='utf-8') as fw: + for ex in generated_examples: + fw.write(json.dumps(ex) + '\n') + print("Save {} processed examples into {} over!".format(len(generated_examples), saved_path)) + + result = evaluate_functional_correctness( + input_file=saved_path, + tmp_dir=temp_dir, + problem_file=problem_file, + language='python', + is_mbpp=True + ) + print(result, model_name_or_path) + pass + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--model', type=str, help="model name or path") + parser.add_argument('--output_path', type=str, help="output path of your generation") + parser.add_argument('--temp_dir', type=str, help="temp dir for evaluation", default="tmp") + args = parser.parse_args() + + os.environ["TOKENIZERS_PARALLELISM"] = "false" + generate_main(args) + pass \ No newline at end of file diff --git a/Evaluation/MBPP/human_eval/evaluation.py b/Evaluation/MBPP/human_eval/evaluation.py index 6d3cbd3..0d47abc 100644 --- a/Evaluation/MBPP/human_eval/evaluation.py +++ b/Evaluation/MBPP/human_eval/evaluation.py @@ -1,9 +1,6 @@ import os -import sys -import fire import json import gzip -import regex import numpy as np import itertools diff --git a/finetune/README.md b/finetune/README.md index 4e71e06..7da659d 100644 --- a/finetune/README.md +++ b/finetune/README.md @@ -18,7 +18,7 @@ And please choose appropriate hyper-parameters(e.g., `learning_rate`, `per_devic ```bash DATA_PATH="" OUTPUT_PATH="" -MODEL="deepseek-ai/deepseek-coder-6.7b-instruct" +MODEL_PATH="deepseek-ai/deepseek-coder-6.7b-instruct" deepspeed finetune_deepseekcoder.py \ --model_name_or_path $MODEL_PATH \