mirror of
https://github.com/deepseek-ai/DeepSeek-Coder
synced 2024-12-04 18:14:44 +00:00
Update README.md
This commit is contained in:
parent
cae2ab3765
commit
d3414b11be
53
README.md
53
README.md
@ -263,7 +263,52 @@ In the following scenario, the DeepSeek-Coder-6.7B model effectively calls a cla
|
||||
|
||||
![Completion GIF](pictures/completion_demo.gif)
|
||||
|
||||
### 5. Detailed Evaluation Results
|
||||
### 5. How to Fine-tune DeepSeek-Coder
|
||||
|
||||
We provide script `finetune_deepseekcoder.py` for users to finetune our models on downstream tasks.
|
||||
|
||||
The script supports the training with [DeepSpeed](https://github.com/microsoft/DeepSpeed). You need install required packages by:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Please follow [Sample Dataset Format](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) to prepare your training data.
|
||||
Each line is a json-serialized string with two required fields `instruction` and `output`.
|
||||
|
||||
After data preparation, you can use the sample shell script to finetune `deepseek-ai/deepseek-coder-6.7b-instruct`.
|
||||
Remember to specify `DATA_PATH`, `OUTPUT_PATH`.
|
||||
And please choose appropriate hyper-parameters(e.g., `learning_rate`, `per_device_train_batch_size`) according to your scenario.
|
||||
|
||||
```bash
|
||||
DATA_PATH="<your_data_path>"
|
||||
OUTPUT_PATH="<your_output_path>"
|
||||
MODEL="deepseek-ai/deepseek-coder-6.7b-instruct"
|
||||
|
||||
deepspeed finetune_deepseekcoder.py \
|
||||
--model_name_or_path $MODEL_PATH \
|
||||
--data_path $DATA_PATH \
|
||||
--output_dir $OUTPUT_PATH \
|
||||
--num_train_epochs 3 \
|
||||
--model_max_length 1024 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 100 \
|
||||
--save_total_limit 100 \
|
||||
--learning_rate 2e-5 \
|
||||
--warmup_steps 10 \
|
||||
--logging_steps 1 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--gradient_checkpointing True \
|
||||
--report_to "tensorboard" \
|
||||
--deepspeed configs/ds_config_zero3.json \
|
||||
--bf16 True
|
||||
```
|
||||
|
||||
### 6. Detailed Evaluation Results
|
||||
|
||||
The reproducible code for the following evaluation results can be found in the [Evaluation](https://github.com/deepseek-ai/deepseek-coder/tree/main/Evaluation) directory.
|
||||
#### 1) Multilingual HumanEval Benchmark
|
||||
@ -278,14 +323,14 @@ The reproducible code for the following evaluation results can be found in the [
|
||||
#### 4) Program-Aid Math Reasoning Benchmark
|
||||
![Math](pictures/Math.png)
|
||||
|
||||
### 6. Resources
|
||||
### 7. Resources
|
||||
[awesome-deepseek-coder](https://github.com/deepseek-ai/awesome-deepseek-coder) is a curated list of open-source projects related to DeepSeek Coder.
|
||||
|
||||
### 7. License
|
||||
### 8. License
|
||||
This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.
|
||||
|
||||
See the [LICENSE-CODE](LICENSE-CODE) and [LICENSE-MODEL](LICENSE-MODEL) for more details.
|
||||
|
||||
### 8. Contact
|
||||
### 9. Contact
|
||||
|
||||
If you have any questions, please raise an issue or contact us at [agi_code@deepseek.com](mailto:agi_code@deepseek.com).
|
||||
|
Loading…
Reference in New Issue
Block a user