add instruction model eval script

This commit is contained in:
Yang Dejian 2023-11-04 17:39:04 +08:00
parent 8a99c2154a
commit 118e71a1af
2 changed files with 232 additions and 0 deletions

View File

@ -0,0 +1,126 @@
import argparse
import json
import os
import torch
from pathlib import Path
from tqdm import tqdm
data_abs_dir = Path(__file__).parent / "data"
from utils.utils import extract_generation_code
from transformers import AutoTokenizer, AutoModelForCausalLM
from human_eval.evaluation import evaluate_functional_correctness
def build_deepseekcoder_instruction(languge: str, question: str):
return '''
Please help me to complete the function. Use the given packages only and DO NOT refer any new package. Please return all completed function in a codeblock.
Here is the given code to do completion:
```{}
{}
```
'''.strip().format(languge.lower(), question)
def generate_one(example, lang, tokenizer, model):
prompt = build_deepseekcoder_instruction(lang, example['prompt'])
inputs = tokenizer.apply_chat_template(
[{'role': 'user', 'content': prompt }],
return_tensors="pt"
).to(model.device)
stop_id = tokenizer.convert_tokens_to_ids("<|EOT|>")
assert isinstance(stop_id, int), "Invalid tokenizer, EOT id not found"
outputs = model.generate(
inputs,
max_new_tokens=512,
do_sample=False,
top_p=0.95,
eos_token_id=stop_id
)
output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
example['output'] = output
return extract_generation_code(example, lang_code=lang)
def generate_main(args):
model_name_or_path = args.model
lang = args.language
saved_path = args.output_path
temp_dir = args.temp_dir
os.makedirs(temp_dir, exist_ok=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path))
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="cuda"
)
model.eval()
problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl")
examples = [json.loads(x) for x in open(problem_file) if x.strip()]
print("Read {} examples for evaluation over.".format(len(examples)))
generated_examples = []
for ex in tqdm(examples, desc='Generating'):
gen_example = generate_one(ex, lang, tokenizer, model)
generated_examples.append(gen_example)
print("Generate all over!!!")
with open(saved_path, 'w', encoding='utf-8') as fw:
for ex in generated_examples:
fw.write(json.dumps(ex) + '\n')
print("Save {} processed examples into {} over!".format(len(generated_examples), saved_path))
result = evaluate_functional_correctness(
input_file=saved_path,
tmp_dir=temp_dir,
n_workers=8,
timeout=3.0,
problem_file=problem_file,
language=lang
)
print(lang, result, model_name_or_path)
pass
def evaluation_only(args):
lang = args.language
temp_dir = args.temp_dir
assert os.path.exists(args.output_path), "Not fond output file: {}".format(args.output_path)
os.makedirs(temp_dir, exist_ok=True)
output_name = os.path.basename(args.output_path)
output_examples = [json.loads(x) for x in open(args.output_path) if x.strip()]
processed_examples = [extract_generation_code(ex, lang) for ex in tqdm(output_examples, "Processing")]
processed_path = os.path.join(temp_dir, output_name)
with open(processed_path, 'w', encoding='utf-8') as fw:
for ex in processed_examples:
fw.write(json.dumps(ex) + '\n')
print("Save {} processed examples into {} over!".format(len(processed_examples), processed_path))
problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl")
from human_eval.evaluation import evaluate_functional_correctness
result = evaluate_functional_correctness(
input_file=processed_path,
tmp_dir=temp_dir,
n_workers=8,
timeout=3.0,
problem_file=problem_file,
language=lang
)
print(lang, result)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, help="model name or path")
parser.add_argument('--output_path', type=str, help="output path of your generation")
parser.add_argument('--language', type=str, help="langauge")
parser.add_argument('--temp_dir', type=str, help="temp dir for evaluation", default="tmp")
args = parser.parse_args()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
generate_main(args)
pass

View File

@ -1,3 +1,109 @@
import re
languge_settings = {
'python': {
'full_name': 'Python',
'indent': 4,
},
'cpp': {
'full_name': 'cpp',
'indent': 0,
'main': "int main()",
},
'java': {
'full_name': 'Java',
'indent': 4,
'main': "public static void main",
},
'cs': {
'full_name': "csharp",
'indent': 0,
'main': "public static void Main",
},
'php': {
'full_name': "PHP",
'indent': 0,
},
'ts': {
'full_name': "TypeScript",
'indent': 0,
},
'js': {
'full_name': "JavaScript",
'indent': 0
},
'sh': {
'full_name': "Bash",
'indent': 0
}
}
def get_function_name(question: str, lang: str):
func_lines = [x for x in question.strip().split('\n') if x.strip()]
if lang.lower() == 'python':
func_idx = [i for i in range(len(func_lines)) if func_lines[i].startswith("def ")][-1]
func_name = func_lines[func_idx].split('(')[0].strip()
func_prefix = "\n".join(func_lines[:func_idx])
return func_name, func_prefix
func_name = func_lines[-1].split('{')[0].strip()
func_prefix = "\n".join(func_lines[:-1])
return func_name, func_prefix
def extract_generation_code(example: str, lang_code: str, verbose: bool=False):
task_id = example['task_id']
output = example.get('output', example.get("gpt_completion"))
question = example["prompt"].strip()
setting = languge_settings[lang_code]
lang = setting['full_name']
indent = setting['indent']
try:
code_block: str = re.findall(f'```{lang.lower()}\n(.*?)```', output, re.DOTALL | re.IGNORECASE)[0]
if verbose:
print(">>> Task: {}\n{}".format(task_id, code_block))
# Remove main
if setting.get('main', None) and setting['main'] in code_block:
main_start = code_block.index(setting['main'])
code_block = code_block[:main_start]
func_name, func_prefix = get_function_name(question, lang)
try:
start = code_block.lower().index(func_name.lower())
indent = 0
while start - indent >= 0 and code_block[start - indent-1] == ' ':
indent += 1
try:
end = code_block.rindex('\n' + ' '*indent + '}')
except:
end = len(code_block)
except:
start = 0
try:
end = code_block.rindex('\n' + ' '*indent + '}')
except:
end = len(code_block)
body = code_block[start:end]
if lang_code.lower() in ['php', 'ts', 'js']:
body += '\n' + ' '*indent + '}'
generation = func_prefix + '\n' + body + '\n'
example['generation'] = generation
except Exception as ex:
print("Failed to extract code block with error `{}`:\n>>> Task: {}\n>>> Output:\n{}".format(
ex, task_id, output
))
example['generation'] = example['prompt'] + '\n' + output
return example
def cleanup_code(
code: str,
language_type: str = None,