2023-11-09 14:46:45 +00:00
|
|
|
import copy
|
|
|
|
import random
|
|
|
|
from dataclasses import dataclass, field
|
|
|
|
from typing import Optional, Dict, Sequence
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.distributed
|
|
|
|
import transformers
|
|
|
|
from transformers import Trainer
|
|
|
|
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
IGNORE_INDEX = -100
|
|
|
|
EOT_TOKEN = "<|EOT|>"
|
|
|
|
|
|
|
|
def build_instruction_prompt(instruction: str):
|
|
|
|
return '''
|
|
|
|
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
|
|
|
### Instruction:
|
|
|
|
{}
|
|
|
|
### Response:
|
|
|
|
'''.format(instruction.strip()).lstrip()
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArguments:
|
|
|
|
model_name_or_path: Optional[str] = field(default="deepseek-ai/deepseek-coder-6.7b-instruct")
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class DataArguments:
|
|
|
|
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class TrainingArguments(transformers.TrainingArguments):
|
|
|
|
cache_dir: Optional[str] = field(default=None)
|
|
|
|
optim: str = field(default="adamw_torch")
|
|
|
|
model_max_length: int = field(
|
|
|
|
default=512,
|
|
|
|
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
|
|
|
|
)
|
|
|
|
|
|
|
|
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
|
|
|
|
"""Collects the state dict and dump to disk."""
|
|
|
|
state_dict = trainer.model.state_dict()
|
|
|
|
if trainer.args.should_save:
|
|
|
|
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
|
|
|
|
del state_dict
|
|
|
|
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
|
|
|
|
|
|
|
|
|
|
|
|
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
|
|
|
"""Tokenize a list of strings."""
|
|
|
|
tokenized_list = [
|
|
|
|
tokenizer(
|
|
|
|
text,
|
|
|
|
return_tensors="pt",
|
|
|
|
padding="longest",
|
|
|
|
max_length=tokenizer.model_max_length,
|
|
|
|
truncation=True,
|
|
|
|
)
|
|
|
|
for text in strings
|
|
|
|
]
|
|
|
|
|
|
|
|
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
|
|
|
|
input_ids_lens = labels_lens = [
|
|
|
|
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
|
|
|
|
]
|
|
|
|
|
|
|
|
return dict(
|
|
|
|
input_ids=input_ids,
|
|
|
|
labels=labels,
|
|
|
|
input_ids_lens=input_ids_lens,
|
|
|
|
labels_lens=labels_lens,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess(
|
|
|
|
sources: Sequence[str],
|
|
|
|
targets: Sequence[str],
|
|
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
|
|
) -> Dict:
|
|
|
|
"""Preprocess the data by tokenizing."""
|
|
|
|
examples = [s + t for s, t in zip(sources, targets)]
|
|
|
|
examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
|
|
|
|
input_ids = examples_tokenized["input_ids"]
|
|
|
|
|
|
|
|
labels = copy.deepcopy(input_ids)
|
|
|
|
for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
|
|
|
|
label[:source_len] = IGNORE_INDEX
|
|
|
|
return dict(input_ids=input_ids, labels=labels)
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class DataCollatorForSupervisedDataset(object):
|
|
|
|
"""Collate examples for supervised fine-tuning."""
|
|
|
|
tokenizer: transformers.PreTrainedTokenizer
|
|
|
|
|
|
|
|
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
|
|
|
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
|
|
|
|
input_ids = [torch.tensor(x) for x in input_ids]
|
|
|
|
input_ids = torch.nn.utils.rnn.pad_sequence(
|
|
|
|
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
|
|
|
|
)
|
|
|
|
labels = [torch.tensor(x) for x in labels]
|
|
|
|
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
|
|
|
|
|
|
|
|
return dict(
|
|
|
|
input_ids=input_ids,
|
|
|
|
labels=labels,
|
|
|
|
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
|
|
|
)
|
|
|
|
|
|
|
|
def train_tokenize_function(examples, tokenizer):
|
|
|
|
sources = [
|
|
|
|
build_instruction_prompt(instruction)
|
|
|
|
for instruction in examples['instruction']
|
|
|
|
]
|
|
|
|
targets = [f"{output}\n{EOT_TOKEN}" for output in examples['output']]
|
|
|
|
data_dict = preprocess(sources, targets, tokenizer)
|
|
|
|
return data_dict
|
|
|
|
|
|
|
|
def train():
|
|
|
|
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
|
|
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
|
|
|
|
if training_args.local_rank == 0:
|
|
|
|
print('='*100)
|
|
|
|
print(training_args)
|
|
|
|
|
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
|
|
model_args.model_name_or_path,
|
|
|
|
model_max_length=training_args.model_max_length,
|
|
|
|
padding_side="right",
|
|
|
|
use_fast=True,
|
|
|
|
trust_remote_code=True
|
|
|
|
)
|
|
|
|
|
|
|
|
print("PAD Token:", tokenizer.pad_token, tokenizer.pad_token_id)
|
|
|
|
print("BOS Token", tokenizer.bos_token, tokenizer.bos_token_id)
|
|
|
|
print("EOS Token", tokenizer.eos_token, tokenizer.eos_token_id)
|
|
|
|
|
|
|
|
if training_args.local_rank == 0:
|
|
|
|
print("Load tokenizer from {} over.".format(model_args.model_name_or_path))
|
|
|
|
|
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
|
|
model_args.model_name_or_path,
|
|
|
|
torch_dtype=torch.bfloat16
|
|
|
|
)
|
|
|
|
|
|
|
|
if training_args.local_rank == 0:
|
|
|
|
print("Load model from {} over.".format(model_args.model_name_or_path))
|
|
|
|
|
|
|
|
|
|
|
|
raw_train_datasets = load_dataset(
|
|
|
|
'json',
|
|
|
|
data_files=data_args.data_path,
|
|
|
|
split="train",
|
|
|
|
cache_dir=training_args.cache_dir
|
|
|
|
)
|
|
|
|
if training_args.local_rank > 0:
|
|
|
|
torch.distributed.barrier()
|
|
|
|
|
|
|
|
train_dataset = raw_train_datasets.map(
|
|
|
|
train_tokenize_function,
|
|
|
|
batched=True,
|
|
|
|
batch_size=3000,
|
|
|
|
num_proc=32,
|
|
|
|
remove_columns=raw_train_datasets.column_names,
|
|
|
|
load_from_cache_file=True, # not args.overwrite_cache
|
|
|
|
desc="Running Encoding",
|
|
|
|
fn_kwargs={ "tokenizer": tokenizer }
|
|
|
|
)
|
|
|
|
|
|
|
|
if training_args.local_rank == 0:
|
|
|
|
torch.distributed.barrier()
|
|
|
|
|
|
|
|
if training_args.local_rank == 0:
|
|
|
|
print("Training dataset samples:", len(train_dataset))
|
|
|
|
for index in random.sample(range(len(train_dataset)), 3):
|
|
|
|
print(f"Sample {index} of the training set: {train_dataset[index]['input_ids']}, {train_dataset[index]['labels']}.")
|
|
|
|
print(f"Sample {index} of the training set: {tokenizer.decode(list(train_dataset[index]['input_ids']))}.")
|
|
|
|
|
|
|
|
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
|
|
|
data_module = dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
|
|
|
|
|
|
|
|
trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
|
|
|
|
|
|
|
|
trainer.train()
|
|
|
|
trainer.save_state()
|
|
|
|
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2023-11-14 10:15:08 +00:00
|
|
|
train()
|