2023-11-09 14:46:45 +00:00
|
|
|
## How to Fine-tune DeepSeek-Coder
|
|
|
|
|
|
|
|
We provide script `finetune_deepseekcoder.py` for users to finetune our models on downstream tasks.
|
|
|
|
|
|
|
|
The script supports the training with [DeepSpeed](https://github.com/microsoft/DeepSpeed). You need install required packages by:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
pip install -r requirements.txt
|
|
|
|
```
|
|
|
|
|
|
|
|
Please follow [Sample Dataset Format](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) to prepare your training data.
|
|
|
|
Each line is a json-serialized string with two required fields `instruction` and `output`.
|
|
|
|
|
|
|
|
After data preparation, you can use the sample shell script to finetune `deepseek-ai/deepseek-coder-6.7b-instruct`.
|
|
|
|
Remember to specify `DATA_PATH`, `OUTPUT_PATH`.
|
|
|
|
And please choose appropriate hyper-parameters(e.g., `learning_rate`, `per_device_train_batch_size`) according to your scenario.
|
|
|
|
|
|
|
|
```bash
|
|
|
|
DATA_PATH="<your_data_path>"
|
|
|
|
OUTPUT_PATH="<your_output_path>"
|
2023-11-23 07:21:59 +00:00
|
|
|
MODEL_PATH="deepseek-ai/deepseek-coder-6.7b-instruct"
|
2023-11-09 14:46:45 +00:00
|
|
|
|
|
|
|
deepspeed finetune_deepseekcoder.py \
|
|
|
|
--model_name_or_path $MODEL_PATH \
|
|
|
|
--data_path $DATA_PATH \
|
|
|
|
--output_dir $OUTPUT_PATH \
|
|
|
|
--num_train_epochs 3 \
|
|
|
|
--model_max_length 1024 \
|
|
|
|
--per_device_train_batch_size 16 \
|
|
|
|
--per_device_eval_batch_size 1 \
|
|
|
|
--gradient_accumulation_steps 4 \
|
|
|
|
--evaluation_strategy "no" \
|
|
|
|
--save_strategy "steps" \
|
|
|
|
--save_steps 100 \
|
|
|
|
--save_total_limit 100 \
|
|
|
|
--learning_rate 2e-5 \
|
|
|
|
--warmup_steps 10 \
|
|
|
|
--logging_steps 1 \
|
|
|
|
--lr_scheduler_type "cosine" \
|
|
|
|
--gradient_checkpointing True \
|
|
|
|
--report_to "tensorboard" \
|
|
|
|
--deepspeed configs/ds_config_zero3.json \
|
|
|
|
--bf16 True
|
|
|
|
```
|