DeepSeek-Coder/finetune/README.md

44 lines
1.6 KiB
Markdown
Raw Permalink Normal View History

2023-11-09 14:46:45 +00:00
## How to Fine-tune DeepSeek-Coder
We provide script `finetune_deepseekcoder.py` for users to finetune our models on downstream tasks.
The script supports the training with [DeepSpeed](https://github.com/microsoft/DeepSpeed). You need install required packages by:
```bash
pip install -r requirements.txt
```
Please follow [Sample Dataset Format](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) to prepare your training data.
Each line is a json-serialized string with two required fields `instruction` and `output`.
After data preparation, you can use the sample shell script to finetune `deepseek-ai/deepseek-coder-6.7b-instruct`.
Remember to specify `DATA_PATH`, `OUTPUT_PATH`.
And please choose appropriate hyper-parameters(e.g., `learning_rate`, `per_device_train_batch_size`) according to your scenario.
```bash
DATA_PATH="<your_data_path>"
OUTPUT_PATH="<your_output_path>"
2023-11-23 07:21:59 +00:00
MODEL_PATH="deepseek-ai/deepseek-coder-6.7b-instruct"
2023-11-09 14:46:45 +00:00
deepspeed finetune_deepseekcoder.py \
--model_name_or_path $MODEL_PATH \
--data_path $DATA_PATH \
--output_dir $OUTPUT_PATH \
--num_train_epochs 3 \
--model_max_length 1024 \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 4 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 100 \
--save_total_limit 100 \
--learning_rate 2e-5 \
--warmup_steps 10 \
--logging_steps 1 \
--lr_scheduler_type "cosine" \
--gradient_checkpointing True \
--report_to "tensorboard" \
--deepspeed configs/ds_config_zero3.json \
--bf16 True
```