DeepSeek-V2

Homepage Chat Hugging Face
Discord Wechat Twitter Follow
Code License Model License

Model Download | Evaluation Results | API Platform | How to Use | License | Citation

Paper LinkšŸ‘ļø

# DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence ## 1. Introduction We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K.

In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks. The list of supported programming languages can be found [here](supported_langs.txt). ## 2. Model Downloads We release the DeepSeek-Coder-V2 with 16B and 236B parameters based on the [DeepSeekMoE](https://arxiv.org/pdf/2401.06066) framework, which has actived parameters of only 2.4B and 21B , including base and instruct models, to the public.
| **Model** | **#Total Params** | **#Active Params** | **Context Length** | **Download** | | :-----------------------------: | :---------------: | :----------------: | :----------------: | :----------------------------------------------------------: | | DeepSeek-Coder-V2-Lite-Base | 16B | 2.4B | 128k | [šŸ¤— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) | | DeepSeek-Coder-V2-Lite-Instruct | 16B | 2.4B | 128k | [šŸ¤— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) | | DeepSeek-Coder-V2-Base | 236B | 21B | 128k | [šŸ¤— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Base) | | DeepSeek-Coder-V2-Instruct | 236B | 21B | 128k | [šŸ¤— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct) |
## 3. Evaluation Results ### 3.1 Code Generation | | #TP | #AP | HumanEval | MBPP+ | LiveCodeBench | USACO | |:------------|:--------:|:--------:|:--------:|:--------:|:--------:|:-----------:| | **Closed-Source Models** | | | | | | | | **Gemini-1.5-Pro** | - | - | 83.5 | **74.6** | 34.1 | 4.9 | | **Claude-3-Opus** | - | - | 84.2 | 72.0 | 34.6 | 7.8 | | **GPT-4-Turbo-1106** | - | - | 87.8 | 69.3 | 37.1 | 11.1 | | **GPT-4-Turbo-0409** | - | - | 88.2 | 72.2 | **45.7** | 12.3 | | **GPT-4o-0513** | - | - | **91.0** | 73.5 | 43.4 | **18.8** | | **Open-Source Models** | | | | | | | | **CodeStral** | 22B | 22B | 78.1 | 68.2 | 31.0 | 4.6 | | **DeepSeek-Coder-Instruct** | 33B | 33B | 79.3 | 70.1 | 22.5 | 4.2 | | **Llama3-Instruct** | 70B | 70B | 81.1 | 68.8 | 28.7 | 3.3 | | **DeepSeek-Coder-V2-Lite-Instruct** | 16B | 2.4B | 81.1 | 68.8 | 24.3 | 6.5 | | **DeepSeek-Coder-V2-Instruct** | 236B | 21B | **90.2** | **76.2** | **43.4** | **12.1** | ### 3.2 Code Completion | Model | #TP | #AP | RepoBench (Python) | RepoBench (Java) | HumanEval FIM | | :------------------------------ | :--: | :--: | :----------------: | :--------------: | :-----------: | | **CodeStral** | 22B | 22B | **46.1** | **45.7** | 83.0 | | **DeepSeek-Coder-Base** | 7B | 7B | 36.2 | 43.3 | 86.1 | | **DeepSeek-Coder-Base** | 33B | 33B | 39.1 | 44.8 | **86.4** | | **DeepSeek-Coder-V2-Lite-Base** | 16B | 2.4B | 38.9 | 43.3 | **86.4** | ### 3.3 Code Fixing | | #TP | #AP | Defects4J | SWE-Bench | Aider | | ----------------------------------- | :--: | :--: | :-------: | :-------: | :------: | | **Closed-Source Models** | | | | | | | **Gemini-1.5-Pro** | - | - | 18.6 | 19.3 | 57.1 | | **Claude-3-Opus** | - | - | 25.5 | 11.7 | 68.4 | | **GPT-4-Turbo-1106** | - | - | 22.8 | 22.7 | 65.4 | | **GPT-4-Turbo-0409** | - | - | 24.3 | 18.3 | 63.9 | | **GPT-4o-0513** | - | - | **26.1** | **26.7** | **72.9** | | **Open-Source Models** | | | | | | | **CodeStral** | 22B | 22B | 17.8 | 2.7 | 51.1 | | **DeepSeek-Coder-Instruct** | 33B | 33B | 11.3 | 0.0 | 54.5 | | **Llama3-Instruct** | 70B | 70B | 16.2 | - | 49.2 | | **DeepSeek-Coder-V2-Lite-Instruct** | 16B | 2.4B | 9.2 | 0.0 | 44.4 | | **DeepSeek-Coder-V2-Instruct** | 236B | 21B | **21.0** | **12.7** | **73.7** | ### 3.4 Mathematical Reasoning | | #TP | #AP | GSM8K | MATH | AIME 2024 | Math Odyssey | | ----------------------------------- | :--: | :--: | :------: | :------: | :-------: | :----------: | | **Closed-Source Models** | | | | | | | | **Gemini-1.5-Pro** | - | - | 90.8 | 67.7 | 2/30 | 45.0 | | **Claude-3-Opus** | - | - | 95.0 | 60.1 | 2/30 | 40.6 | | **GPT-4-Turbo-1106** | - | - | 91.4 | 64.3 | 1/30 | 49.1 | | **GPT-4-Turbo-0409** | - | - | 93.7 | 73.4 | **3/30** | 46.8 | | **GPT-4o-0513** | - | - | **95.8** | **76.6** | 2/30 | **53.2** | | **Open-Source Models** | | | | | | | | **Llama3-Instruct** | 70B | 70B | 93.0 | 50.4 | 1/30 | 27.9 | | **DeepSeek-Coder-V2-Lite-Instruct** | 16B | 2.4B | 86.4 | 61.8 | 0/30 | 44.4 | | **DeepSeek-Coder-V2-Instruct** | 236B | 21B | **94.9** | **75.7** | **4/30** | **53.7** | ### 3.5 General Natural Language | Benchmark | Domain | DeepSeek-V2-Lite Chat | DeepSeek-Coder-V2-Lite Instruct | DeepSeek-V2 Chat | DeepSeek-Coder-V2 Instruct | | :------------------: | :-----: | :-------------------: | :-----------------------------: | :--------------: | :------------------------: | | **BBH** | English | 48.1 | 61.2 | 79.7 | **83.9** | | **MMLU** | English | 55.7 | 60.1 | 78.1 | **79.2** | | **ARC-Easy** | English | 86.1 | 88.9 | **98.1** | 97.4 | | **ARC-Challenge** | English | 73.4 | 77.4 | 92.3 | **92.8** | | **TriviaQA** | English | 65.2 | 59.5 | **86.7** | 82.3 | | **NaturalQuestions** | English | 35.5 | 30.8 | **53.4** | 47.5 | | **AGIEval** | English | 42.8 | 28.7 | **61.4** | 60 | | **CLUEWSC** | Chinese | 80.0 | 76.5 | **89.9** | 85.9 | | **C-Eval** | Chinese | 60.1 | 61.6 | 78.0 | **79.4** | | **CMMLU** | Chinese | 62.5 | 62.7 | **81.6** | 80.9 | | **Arena-Hard** | - | 11.4 | 38.1 | 41.6 | **65.0** | | **AlpaceEval 2.0** | - | 16.9 | 17.7 | **38.9** | 36.9 | | **MT-Bench** | - | 7.37 | 7.81 | **8.97** | 8.77 | | **Alignbench** | - | 6.02 | 6.83 | **7.91** | 7.84 | ### 3.6 Context Window

Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-Coder-V2 performs well across all context window lengths up to **128K**. ## 4. Chat Website You can chat with the DeepSeek-Coder-V2 on DeepSeek's official website: [coder.deepseek.com](https://coder.deepseek.com/sign_in) ## 5. API Platform We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/), and you can also pay-as-you-go at an unbeatable price.

## 6. How to run locally **Here, we provide some examples of how to use DeepSeek-Coder-V2-Lite model. If you want to utilize DeepSeek-Coder-V2 in BF16 format for inference, 80GB*8 GPUs are required.** ### Inference with Huggingface's Transformers You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference. #### Code Completion ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() input_text = "#write a quick sort algorithm" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` #### Code Insertion ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() input_text = """<ļ½œfimā–beginļ½œ>def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[0] left = [] right = [] <ļ½œfimā–holeļ½œ> if arr[i] < pivot: left.append(arr[i]) else: right.append(arr[i]) return quick_sort(left) + [pivot] + quick_sort(right)<ļ½œfimā–endļ½œ>""" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):]) ``` #### Chat Completion ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() messages=[ { 'role': 'user', 'content': "write a quick sort algorithm in python."} ] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) # tokenizer.eos_token_id is the id of <|EOT|> token outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) ``` The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository. An example of chat template is as belows: ```bash <ļ½œbeginā–ofā–sentenceļ½œ>User: {user_message_1} Assistant: {assistant_message_1}<ļ½œendā–ofā–sentenceļ½œ>User: {user_message_2} Assistant: ``` You can also add an optional system message: ```bash <ļ½œbeginā–ofā–sentenceļ½œ>{system_message} User: {user_message_1} Assistant: {assistant_message_1}<ļ½œendā–ofā–sentenceļ½œ>User: {user_message_2} Assistant: ``` In the last round of dialogue, note that "Assistant:" has no space after the colon. Adding a space might cause the following issues on the 16B-Lite model: - English questions receiving Chinese responses. - Responses containing garbled text. - Responses repeating excessively. Older versions of Ollama had this bug (see https://github.com/deepseek-ai/DeepSeek-Coder-V2/issues/12), but it has been fixed in the latest version. ### Inference with vLLM (recommended) To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams max_model_len, tp_size = 8192, 1 model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) messages_list = [ [{"role": "user", "content": "Who are you?"}], [{"role": "user", "content": "write a quick sort algorithm in python."}], [{"role": "user", "content": "Write a piece of quicksort code in C++."}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` ## 7. License This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-Coder-V2 Base/Instruct models is subject to [the Model License](LICENSE-MODEL). DeepSeek-Coder-V2 series (including Base and Instruct) supports commercial use. ## 8. Citation ```latex @article{zhu2024deepseek, title={DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence}, author={Zhu, Qihao and Guo, Daya and Shao, Zhihong and Yang, Dejian and Wang, Peiyi and Xu, Runxin and Wu, Y and Li, Yukun and Gao, Huazuo and Ma, Shirong and others}, journal={arXiv preprint arXiv:2406.11931}, year={2024} } ``` ## 9. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).