Merge pull request #52 from Ying1123/Ying1123-patch-1

doc: recommend SGLang for DeepSeek Coder V2 inference
This commit is contained in:
Chong Ruan 2024-09-24 20:09:45 +08:00 committed by GitHub
commit c59bc464f6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -275,6 +275,42 @@ In the last round of dialogue, note that "Assistant:" has no space after the col
Older versions of Ollama had this bug (see https://github.com/deepseek-ai/DeepSeek-Coder-V2/issues/12), but it has been fixed in the latest version. Older versions of Ollama had this bug (see https://github.com/deepseek-ai/DeepSeek-Coder-V2/issues/12), but it has been fixed in the latest version.
### Inference with SGLang (recommended)
[SGLang](https://github.com/sgl-project/sglang) currently supports MLA optimizations, FP8 (W8A8), FP8 KV Cache, and Torch Compile, offering the best latency and throughput among open-source frameworks. Here are some example commands to launch an OpenAI API-compatible server:
```bash
# BF16, tensor parallelism = 8
python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-Coder-V2-Instruct --tp 8 --trust-remote-code
# BF16, w/ torch.compile (The compilation can take several minutes)
python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct --trust-remote-code --enable-torch-compile
# FP8, tensor parallelism = 8, FP8 KV cache
python3 -m sglang.launch_server --model neuralmagic/DeepSeek-Coder-V2-Instruct-FP8 --tp 8 --trust-remote-code --kv-cache-dtype fp8_e5m2
```
After launching the server, you can query it with OpenAI API
```
import openai
client = openai.Client(
base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")
# Chat completion
response = client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant"},
{"role": "user", "content": "List 3 countries and their capitals."},
],
temperature=0,
max_tokens=64,
)
print(response)
```
### Inference with vLLM (recommended) ### Inference with vLLM (recommended)
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650. To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.