mirror of
https://github.com/deepseek-ai/DeepGEMM
synced 2025-05-09 01:29:22 +00:00
Decorate the test function with @pytest.mark.skipif(...) so the test is skipped if CUDA is unavailable. Move all testing logic into a function named test_jit() so it’s automatically discoverable by pytest.
99 lines
2.9 KiB
Python
99 lines
2.9 KiB
Python
import os
|
|
import pytest
|
|
import torch
|
|
from typing import Any
|
|
|
|
from deep_gemm import jit
|
|
|
|
|
|
class Capture:
|
|
"""
|
|
Context manager to capture stdout via OS pipes.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self.read_fd = None
|
|
self.write_fd = None
|
|
self.saved_stdout = None
|
|
self.captured = None
|
|
|
|
def __enter__(self) -> Any:
|
|
self.read_fd, self.write_fd = os.pipe()
|
|
self.saved_stdout = os.dup(1)
|
|
os.dup2(self.write_fd, 1)
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
|
|
os.dup2(self.saved_stdout, 1)
|
|
os.close(self.write_fd)
|
|
with os.fdopen(self.read_fd, 'r') as f:
|
|
self.captured = f.read()
|
|
|
|
def capture(self) -> str:
|
|
return self.captured
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason='CUDA is required for this test.')
|
|
def test_jit():
|
|
# Print NVCC compiler
|
|
print(f'NVCC compiler: {jit.get_nvcc_compiler()}\n')
|
|
|
|
# Define function arguments and code body
|
|
print('Generated code:')
|
|
args = (
|
|
('lhs', torch.float8_e4m3fn),
|
|
('rhs', torch.float8_e4m3fn),
|
|
('scale', torch.float),
|
|
('out', torch.bfloat16),
|
|
('enable_double_streams', bool),
|
|
('stream', torch.cuda.Stream),
|
|
)
|
|
|
|
body = ''
|
|
body += 'std::cout << reinterpret_cast<uint64_t>(lhs) << std::endl;\n'
|
|
body += 'std::cout << reinterpret_cast<uint64_t>(rhs) << std::endl;\n'
|
|
body += 'std::cout << reinterpret_cast<uint64_t>(scale) << std::endl;\n'
|
|
body += 'std::cout << reinterpret_cast<uint64_t>(out) << std::endl;\n'
|
|
body += 'std::cout << enable_double_streams << std::endl;\n'
|
|
body += 'std::cout << reinterpret_cast<uint64_t>(stream) << std::endl;\n'
|
|
|
|
code = jit.generate((), args, body)
|
|
print(code)
|
|
|
|
# Build the function
|
|
print('Building ...')
|
|
func = jit.build('test_func', args, code)
|
|
|
|
# Test correctness
|
|
print('Running ...')
|
|
fp8_tensor = torch.empty((1,), dtype=torch.float8_e4m3fn, device='cuda')
|
|
fp32_tensor = torch.empty((1,), dtype=torch.float, device='cuda')
|
|
bf16_tensor = torch.empty((1,), dtype=torch.bfloat16, device='cuda')
|
|
|
|
with Capture() as capture:
|
|
ret = func(
|
|
fp8_tensor,
|
|
fp8_tensor,
|
|
fp32_tensor,
|
|
bf16_tensor,
|
|
True,
|
|
torch.cuda.current_stream(),
|
|
)
|
|
# If your JIT returns an error code, test it here
|
|
assert ret == 0, f'JIT function returned error code: {ret}'
|
|
|
|
output = capture.capture()
|
|
ref_output = (
|
|
f'{fp8_tensor.data_ptr()}\n'
|
|
f'{fp8_tensor.data_ptr()}\n'
|
|
f'{fp32_tensor.data_ptr()}\n'
|
|
f'{bf16_tensor.data_ptr()}\n'
|
|
f'1\n'
|
|
f'{torch.cuda.current_stream().cuda_stream}\n'
|
|
)
|
|
|
|
# Compare the captured output to the reference
|
|
assert output == ref_output, f'Mismatch!\nGot:\n{output}\nExpected:\n{ref_output}'
|
|
|
|
print('JIT test passed')
|