DeepGEMM/tests/test_jit.py
A-transformer 58046b4e01
pytest Integration
Decorate the test function with @pytest.mark.skipif(...) so the test is skipped if CUDA is unavailable.
Move all testing logic into a function named test_jit() so it’s automatically discoverable by pytest.
2025-02-27 09:48:20 +04:00

99 lines
2.9 KiB
Python

import os
import pytest
import torch
from typing import Any
from deep_gemm import jit
class Capture:
"""
Context manager to capture stdout via OS pipes.
"""
def __init__(self) -> None:
self.read_fd = None
self.write_fd = None
self.saved_stdout = None
self.captured = None
def __enter__(self) -> Any:
self.read_fd, self.write_fd = os.pipe()
self.saved_stdout = os.dup(1)
os.dup2(self.write_fd, 1)
return self
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
os.dup2(self.saved_stdout, 1)
os.close(self.write_fd)
with os.fdopen(self.read_fd, 'r') as f:
self.captured = f.read()
def capture(self) -> str:
return self.captured
@pytest.mark.skipif(not torch.cuda.is_available(), reason='CUDA is required for this test.')
def test_jit():
# Print NVCC compiler
print(f'NVCC compiler: {jit.get_nvcc_compiler()}\n')
# Define function arguments and code body
print('Generated code:')
args = (
('lhs', torch.float8_e4m3fn),
('rhs', torch.float8_e4m3fn),
('scale', torch.float),
('out', torch.bfloat16),
('enable_double_streams', bool),
('stream', torch.cuda.Stream),
)
body = ''
body += 'std::cout << reinterpret_cast<uint64_t>(lhs) << std::endl;\n'
body += 'std::cout << reinterpret_cast<uint64_t>(rhs) << std::endl;\n'
body += 'std::cout << reinterpret_cast<uint64_t>(scale) << std::endl;\n'
body += 'std::cout << reinterpret_cast<uint64_t>(out) << std::endl;\n'
body += 'std::cout << enable_double_streams << std::endl;\n'
body += 'std::cout << reinterpret_cast<uint64_t>(stream) << std::endl;\n'
code = jit.generate((), args, body)
print(code)
# Build the function
print('Building ...')
func = jit.build('test_func', args, code)
# Test correctness
print('Running ...')
fp8_tensor = torch.empty((1,), dtype=torch.float8_e4m3fn, device='cuda')
fp32_tensor = torch.empty((1,), dtype=torch.float, device='cuda')
bf16_tensor = torch.empty((1,), dtype=torch.bfloat16, device='cuda')
with Capture() as capture:
ret = func(
fp8_tensor,
fp8_tensor,
fp32_tensor,
bf16_tensor,
True,
torch.cuda.current_stream(),
)
# If your JIT returns an error code, test it here
assert ret == 0, f'JIT function returned error code: {ret}'
output = capture.capture()
ref_output = (
f'{fp8_tensor.data_ptr()}\n'
f'{fp8_tensor.data_ptr()}\n'
f'{fp32_tensor.data_ptr()}\n'
f'{bf16_tensor.data_ptr()}\n'
f'1\n'
f'{torch.cuda.current_stream().cuda_stream}\n'
)
# Compare the captured output to the reference
assert output == ref_output, f'Mismatch!\nGot:\n{output}\nExpected:\n{ref_output}'
print('JIT test passed')