DeepGEMM/deep_gemm/jit/runtime.py
2025-05-07 13:23:40 +08:00

92 lines
3.3 KiB
Python

import os
import subprocess
import time
import cuda.bindings.driver as cbd
from typing import List, Optional, Type
from torch.utils.cpp_extension import CUDA_HOME
class Runtime:
def __init__(self, path: str, args: List[str] = None) -> None:
self.path = path
self.lib = None
self.kernel = None
self.args = args
assert self.is_path_valid(self.path)
@staticmethod
def is_path_valid(path: str) -> bool:
# Exists and is a directory
if not os.path.exists(path) or not os.path.isdir(path):
return False
# Contains all necessary files
files = ['kernel.cubin']
return all(os.path.exists(os.path.join(path, file)) for file in files)
@staticmethod
def generate(**kwargs) -> str:
raise NotImplemented
@staticmethod
def launch(kernel: cbd.CUkernel, **kwargs) -> cbd.CUresult:
raise NotImplemented
def __call__(self, **kwargs) -> cbd.CUresult:
# Load CUBIN
if self.kernel is None:
start_time = time.time_ns()
# Load CUBIN
path = bytes(os.path.join(self.path, 'kernel.cubin'), 'utf-8')
result, self.lib = cbd.cuLibraryLoadFromFile(path, [], [], 0, [], [], 0)
assert result == cbd.CUresult.CUDA_SUCCESS, f'Failed to load library: {result}'
# Extract the kernel name
# TODO: use `cuda-bindings` API to do this (requires at least 12.8)
command = [f'{CUDA_HOME}/bin/cuobjdump', '-symbols', path]
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
assert result.returncode == 0
kernel_names = [line.split()[-1] for line in result.stdout.splitlines()
if line.startswith('STT_FUNC') and '__instantiate_kernel' not in line]
assert len(kernel_names) == 1, f'Too many kernels in the library: {kernel_names}'
# Load kernel from the library
result, self.kernel = cbd.cuLibraryGetKernel(self.lib, bytes(kernel_names[0], encoding='utf-8'))
assert result == cbd.CUresult.CUDA_SUCCESS, f'Failed to load kernel: {result}'
end_time = time.time_ns()
elapsed_time = (end_time - start_time) / 1e6
if int(os.getenv('DG_JIT_DEBUG', 0)):
print(f'Loading JIT runtime {self.path} took {elapsed_time:.2f} ms.')
# noinspection PyArgumentList
return self.launch(self.kernel, *[kwargs[arg] for arg in self.args])
def __del__(self) -> None:
if self.lib is not None:
res = cbd.cuLibraryUnload(self.lib)[0]
if res != cbd.CUresult.CUDA_SUCCESS:
raise Exception(f'Failed to unload library {self.path}: {res}')
class RuntimeCache:
def __init__(self) -> None:
self.cache = {}
def __setitem__(self, path: str, runtime: Runtime) -> None:
self.cache[path] = runtime
def get(self, path: str, runtime_cls: Type[Runtime]) -> Optional[Runtime]:
# In Python runtime
if path in self.cache:
return self.cache[path]
# Already compiled
if not int(os.getenv('DG_JIT_DISABLE_CACHE', 0)) and os.path.exists(path) and Runtime.is_path_valid(path):
runtime = runtime_cls(path)
self.cache[path] = runtime
return runtime
return None