mirror of
https://github.com/deepseek-ai/DeepGEMM
synced 2025-06-26 23:15:49 +00:00
* Grouped GEMM skip useless computation for unaligned Ms * Update readme.md * small typo * Rename variables * Restore previous indent * Format * Refactor tests * Add `SkipComputation` types * Bug fixed * Format * Fix tests * Add assertions * Minor fix --------- Co-authored-by: yukuai <yukuai@deepseek.com> Co-authored-by: Chenggang Zhao <chenggangz@deepseek.com>
313 lines
15 KiB
Python
313 lines
15 KiB
Python
# PyTorch has its own NVRTC, which may have a lower version than the system
|
|
# So try to disable PyTorch's NVRTC, or import NVRTC before PyTorch
|
|
import cuda.bindings.nvrtc as nvrtc
|
|
print(f'NVRTC version: {nvrtc.nvrtcVersion()[1:]}')
|
|
|
|
import random
|
|
import torch
|
|
from typing import List, Tuple
|
|
|
|
import deep_gemm
|
|
from deep_gemm import bench_kineto, calc_diff, ceil_div, get_col_major_tma_aligned_tensor
|
|
from deep_gemm.jit_kernels.utils import get_m_alignment_for_contiguous_layout
|
|
|
|
|
|
def per_token_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
assert x.dim() == 2
|
|
m, n = x.shape
|
|
pad_size = (128 - (n % 128)) % 128
|
|
x = torch.nn.functional.pad(x, (0, pad_size), value=0) if pad_size > 0 else x
|
|
x_view = x.view(m, -1, 128)
|
|
x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
|
|
fp8_data = (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn)
|
|
return fp8_data.view(m, n + pad_size)[:, :n], (x_amax / 448.0).view(m, -1)
|
|
|
|
|
|
def per_block_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
assert x.dim() == 2
|
|
m, n = x.shape
|
|
x_padded = torch.zeros((ceil_div(m, 128) * 128, ceil_div(n, 128) * 128), dtype=x.dtype, device=x.device)
|
|
x_padded[:m, :n] = x
|
|
x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
|
|
x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
|
|
x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
|
|
return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2))
|
|
|
|
|
|
def construct(m: int, k: int, n: int) -> \
|
|
Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
|
x = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
|
|
y = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
|
|
out = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
|
|
ref_out = x @ y.t()
|
|
|
|
x_fp8, y_fp8 = per_token_cast_to_fp8(x), per_block_cast_to_fp8(y)
|
|
# Transpose earlier so that the testing will not trigger transposing kernels
|
|
x_fp8 = (x_fp8[0], get_col_major_tma_aligned_tensor(x_fp8[1]))
|
|
return x_fp8, y_fp8, out, ref_out
|
|
|
|
|
|
def construct_contiguous_grouped(num_groups: int, expected_m_per_group: int, k: int, n: int) -> \
|
|
Tuple[int, Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
alignment = get_m_alignment_for_contiguous_layout()
|
|
group_ms = [int(expected_m_per_group * random.uniform(0.7, 1.3)) for _ in range(num_groups)]
|
|
m = sum([ceil_div(x, alignment) * alignment for x in group_ms])
|
|
|
|
x = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
|
|
y = torch.randn((num_groups, n, k), device='cuda', dtype=torch.bfloat16)
|
|
m_indices = torch.empty(m, device='cuda', dtype=torch.int32)
|
|
out = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
|
|
ref_out = torch.randn((m, n), device='cuda', dtype=torch.bfloat16)
|
|
|
|
start = 0
|
|
for i, group_m in enumerate(group_ms):
|
|
actual_end = start + group_m
|
|
aligned_end = start + ceil_div(group_m, alignment) * alignment
|
|
m_indices[start:actual_end] = i
|
|
m_indices[actual_end:aligned_end] = -1
|
|
ref_out[start:aligned_end] = x[start:aligned_end] @ y[i].t()
|
|
start = aligned_end
|
|
ref_out = torch.where((m_indices == -1).unsqueeze(1), torch.zeros_like(ref_out), ref_out)
|
|
|
|
assert m % 4 == 0, f'TMA alignment error: {m}'
|
|
x_fp8 = per_token_cast_to_fp8(x)
|
|
y_fp8 = (torch.empty_like(y, dtype=torch.float8_e4m3fn), torch.empty((num_groups, ceil_div(n, 128), k // 128), device='cuda', dtype=torch.float))
|
|
for i in range(num_groups):
|
|
y_fp8[0][i], y_fp8[1][i] = per_block_cast_to_fp8(y[i])
|
|
|
|
return m, x_fp8, y_fp8, m_indices, out, ref_out
|
|
|
|
|
|
def construct_masked_grouped(num_groups: int, max_m: int, expected_m_per_group: int, k: int, n: int) -> \
|
|
Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
x = torch.randn((num_groups, max_m, k), device='cuda', dtype=torch.bfloat16)
|
|
y = torch.randn((num_groups, n, k), device='cuda', dtype=torch.bfloat16)
|
|
out = torch.empty((num_groups, max_m, n), device='cuda', dtype=torch.bfloat16)
|
|
ref_out = torch.einsum('gmk,gnk->gmn', x, y)
|
|
|
|
assert max_m % 4 == 0, f'TMA alignment error: {max_m}'
|
|
x_fp8 = (torch.empty_like(x, dtype=torch.float8_e4m3fn), torch.empty((num_groups, max_m, k // 128), device='cuda', dtype=torch.float))
|
|
y_fp8 = (torch.empty_like(y, dtype=torch.float8_e4m3fn), torch.empty((num_groups, ceil_div(n, 128), k // 128), device='cuda', dtype=torch.float))
|
|
for i in range(num_groups):
|
|
x_fp8[0][i], x_fp8[1][i] = per_token_cast_to_fp8(x[i])
|
|
y_fp8[0][i], y_fp8[1][i] = per_block_cast_to_fp8(y[i])
|
|
|
|
# Transpose earlier so that the testing will not trigger transposing kernels
|
|
x_fp8 = (x_fp8[0], get_col_major_tma_aligned_tensor(x_fp8[1]))
|
|
|
|
# Construct mask
|
|
masked_m = torch.empty((num_groups, ), device='cuda', dtype=torch.int)
|
|
for j in range(num_groups):
|
|
masked_m[j] = int(expected_m_per_group * random.uniform(0.7, 1.3))
|
|
assert masked_m.amax().item() <= max_m
|
|
return x_fp8, y_fp8, masked_m, out, ref_out
|
|
|
|
|
|
def construct_wgrad(m: int, k: int, n: int) -> \
|
|
Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
x = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
|
|
y = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
|
|
residual = torch.randn((m, n), device='cuda', dtype=torch.float) * 10
|
|
out = residual.clone()
|
|
ref_out = residual + (x.float() @ y.float().t())
|
|
|
|
x_fp8 = per_token_cast_to_fp8(x)
|
|
y_fp8 = per_token_cast_to_fp8(y)
|
|
|
|
# NOTES: please do inplace add on the `out` later
|
|
return x_fp8, y_fp8, residual, out, ref_out
|
|
|
|
|
|
def construct_k_grouped_wgrad(m: int, n: int, k_sizes: List[int]) -> \
|
|
Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor, List[int]]:
|
|
num_groups, total_k = len(k_sizes), sum(k_sizes)
|
|
|
|
x_flat = torch.empty((m * total_k,), device='cuda', dtype=torch.bfloat16)
|
|
y_flat = torch.empty((n * total_k,), device='cuda', dtype=torch.bfloat16)
|
|
out = torch.zeros((num_groups, m, n), device='cuda', dtype=torch.float)
|
|
ref_out = torch.zeros((num_groups, m, n), device='cuda', dtype=torch.float)
|
|
|
|
# Fill tensors with data and compute reference output
|
|
x_offset, y_offset = 0, 0
|
|
for idx, k in enumerate(k_sizes):
|
|
x_chunk = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
|
|
y_chunk = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
|
|
|
|
x_flat[x_offset:x_offset + m * k].copy_(x_chunk.flatten())
|
|
y_flat[y_offset:y_offset + n * k].copy_(y_chunk.flatten())
|
|
ref_out[idx] = x_chunk.float() @ y_chunk.float().t()
|
|
|
|
x_offset += m * k
|
|
y_offset += n * k
|
|
|
|
x_fp8_flat = torch.empty_like(x_flat, dtype=torch.float8_e4m3fn)
|
|
y_fp8_flat = torch.empty_like(y_flat, dtype=torch.float8_e4m3fn)
|
|
|
|
total_scale_factors = sum(ceil_div(k, 128) for k in k_sizes)
|
|
x_scales = torch.empty((total_scale_factors, m), device='cuda', dtype=torch.float)
|
|
y_scales = torch.empty((total_scale_factors, n), device='cuda', dtype=torch.float)
|
|
|
|
# Cast to FP8 and prepare scale factors
|
|
x_offset, y_offset, scale_offset = 0, 0, 0
|
|
for k in k_sizes:
|
|
x_fp8_chunk, x_scale_chunk = per_token_cast_to_fp8(x_flat[x_offset:x_offset + m * k].view(m, k))
|
|
y_fp8_chunk, y_scale_chunk = per_token_cast_to_fp8(y_flat[y_offset:y_offset + n * k].view(n, k))
|
|
|
|
x_fp8_flat[x_offset:x_offset + m * k].copy_(x_fp8_chunk.flatten())
|
|
y_fp8_flat[y_offset:y_offset + n * k].copy_(y_fp8_chunk.flatten())
|
|
|
|
num_scales = ceil_div(k, 128)
|
|
x_scales[scale_offset:scale_offset + num_scales].copy_(x_scale_chunk.T)
|
|
y_scales[scale_offset:scale_offset + num_scales].copy_(y_scale_chunk.T)
|
|
|
|
x_offset += m * k
|
|
y_offset += n * k
|
|
scale_offset += num_scales
|
|
|
|
return (x_fp8_flat, x_scales), (y_fp8_flat, y_scales), out, ref_out, k_sizes
|
|
|
|
|
|
def test_gemm() -> None:
|
|
print('Testing GEMM:')
|
|
for m in (64, 128, 4096):
|
|
for k, n in [(576, 7168), (7168, 2112), (1536, 24576), (512, 32768), (16384, 7168), (7168, 4096), (2048, 7168)]:
|
|
x_fp8, y_fp8, out, ref_out = construct(m, k, n)
|
|
deep_gemm.gemm_fp8_fp8_bf16_nt(x_fp8, y_fp8, out)
|
|
diff = calc_diff(out, ref_out)
|
|
assert diff < 0.001, f'{m=}, {k=}, {n=}, {diff:.5f}'
|
|
|
|
# noinspection PyShadowingNames
|
|
def test_func():
|
|
deep_gemm.gemm_fp8_fp8_bf16_nt(x_fp8, y_fp8, out)
|
|
|
|
t = bench_kineto(test_func, 'fp8_gemm', suppress_kineto_output=True)
|
|
print(f' > Perf (m={m:5}, n={n:5}, k={k:5}): {t * 1e6:4.0f} us | '
|
|
f'throughput: {2 * m * n * k / t / 1e12:4.0f} TFLOPS, '
|
|
f'{(m * k + k * n + m * n * 2) / 1e9 / t:4.0f} GB/s')
|
|
print()
|
|
|
|
|
|
def test_m_grouped_gemm_contiguous() -> None:
|
|
print('Testing grouped contiguous GEMM:')
|
|
|
|
for num_groups, expected_m_per_group, k, n in ((4, 8192, 7168, 4096), (4, 8192, 2048, 7168),
|
|
(8, 4096, 7168, 4096), (8, 4096, 2048, 7168),
|
|
(32, 256, 7168, 4096), (32, 256, 2048, 7168)):
|
|
# NOTES: we should mask the unfilled part before calculating difference
|
|
m, x_fp8, y_fp8, m_indices, out, ref_out = construct_contiguous_grouped(num_groups, expected_m_per_group, k, n)
|
|
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(x_fp8, y_fp8, out, m_indices)
|
|
out = torch.where((m_indices == -1).unsqueeze(1), torch.zeros_like(out), out)
|
|
diff = calc_diff(out, ref_out)
|
|
assert diff < 0.001, f'{m=}, {k=}, {n=}, {diff:.5f}'
|
|
|
|
# noinspection PyShadowingNames
|
|
def test_func():
|
|
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(x_fp8, y_fp8, out, m_indices)
|
|
|
|
t = bench_kineto(test_func, 'fp8_gemm', suppress_kineto_output=True)
|
|
valid_m = (m_indices != -1).sum().item()
|
|
print(f' > Perf ({num_groups=:2}, {expected_m_per_group=:4}, n={n:4}, k={k:4}): {t * 1e6:4.0f} us | '
|
|
f'throughput: {2 * valid_m * n * k / t / 1e12:4.0f} TFLOPS, '
|
|
f'{(valid_m * k + num_groups * k * n + valid_m * n * 2) / 1e9 / t:4.0f} GB/s')
|
|
print()
|
|
|
|
|
|
def test_m_grouped_gemm_masked() -> None:
|
|
print('Testing grouped masked GEMM:')
|
|
|
|
for num_groups, expected_m_per_group in ((1, 1024), (2, 512), (4, 256)):
|
|
for k, n in ((7168, 4096), (2048, 7168), ):
|
|
# Test correctness
|
|
for i in range(10):
|
|
x_fp8, y_fp8, masked_m, out, ref_out = construct_masked_grouped(num_groups, 4096, expected_m_per_group, k, n)
|
|
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_masked(x_fp8, y_fp8, out, masked_m, expected_m_per_group)
|
|
for j in range(num_groups):
|
|
diff = calc_diff(out[j, :masked_m[j].item()], ref_out[j, :masked_m[j].item()])
|
|
assert diff < 0.001, f'{expected_m_per_group=}, {k=}, {n=}, {j=}, masked_m={masked_m[j]}, {num_groups=}, {diff:.5f}'
|
|
|
|
# noinspection PyShadowingNames
|
|
def test_func():
|
|
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_masked(x_fp8, y_fp8, out, masked_m, expected_m_per_group)
|
|
|
|
# Test performance with fixed shapes
|
|
# noinspection PyUnboundLocalVariable
|
|
valid_m = masked_m.sum().item()
|
|
t = bench_kineto(test_func, 'fp8_gemm', suppress_kineto_output=True)
|
|
print(f' > Perf ({num_groups=}, expected_m_per_group={expected_m_per_group:4}, n={n:4}, k={k:4}): {t * 1e6:4.0f} us | '
|
|
f'throughput: {2 * valid_m * n * k / t / 1e12:4.0f} TFLOPS, '
|
|
f'{(valid_m * k + num_groups * k * n + valid_m * n * 2) / 1e9 / t:4.0f} GB/s')
|
|
print()
|
|
|
|
|
|
def test_wgrad_gemm():
|
|
print('Testing weight gradient GEMM:')
|
|
|
|
for k in (4096, 8192):
|
|
for m, n in ((7168, 2112), (1536, 24576), (512, 32768), (16384, 7168), (7168, 4096), (2048, 7168)):
|
|
# Test correctness
|
|
x_fp8, y_fp8, residual, out, ref_out = construct_wgrad(m, k, n)
|
|
deep_gemm.wgrad_gemm_fp8_fp8_fp32_nt(x_fp8, y_fp8, out)
|
|
diff = calc_diff(out, ref_out)
|
|
assert diff < 0.001, f'{m=}, {k=}, {n=}, {diff:.5f}'
|
|
|
|
# Construct new tensors only once to avoid L2 cache acceleration (creating them puts them in L2)
|
|
x_fp8, y_fp8, residual, out, ref_out = construct_wgrad(m, k, n)
|
|
|
|
# noinspection PyShadowingNames
|
|
def test_func():
|
|
deep_gemm.wgrad_gemm_fp8_fp8_fp32_nt(x_fp8, y_fp8, out)
|
|
|
|
t = bench_kineto(test_func, 'fp8_wgrad_gemm', suppress_kineto_output=True)
|
|
print(f' > Performance (m={m:5}, n={n:5}, k={k:5}): {t * 1e6:4.0f} us | '
|
|
f'throughput: {2 * m * n * k / t / 1e12:4.0f} TFLOPS, '
|
|
f'{(m * k + k * n + m * n * 2) / 1e9 / t:4.0f} GB/s')
|
|
print()
|
|
|
|
|
|
def test_k_grouped_wgrad_gemm():
|
|
print('Testing grouped weight gradient GEMM:')
|
|
|
|
for num_groups, base_k in ((4, 4096), (4, 8192), (8, 4096)):
|
|
for m, n in ((7168, 4096), (2048, 7168)):
|
|
# Vary k sizes around base_k
|
|
k_sizes = [base_k + random.randint(-1, 1) * 128 for _ in range(num_groups - 1)]
|
|
k_sizes.append(base_k * num_groups - sum(k_sizes))
|
|
|
|
# Test correctness
|
|
x_fp8, y_fp8, out, ref_out, k_sizes = construct_k_grouped_wgrad(m, n, k_sizes)
|
|
deep_gemm.k_grouped_wgrad_gemm_fp8_fp8_fp32_nt(x_fp8, y_fp8, out, k_sizes)
|
|
|
|
for idx in range(num_groups):
|
|
diff = calc_diff(out[idx], ref_out[idx])
|
|
assert diff < 0.001, f'{num_groups=}, {m=}, {n=}, k={k_sizes[idx]}, batch={idx}, {diff:.5f}'
|
|
|
|
# Construct new tensors to avoid L2 cache acceleration
|
|
x_fp8, y_fp8, out, ref_out, k_sizes = construct_k_grouped_wgrad(m, n, k_sizes)
|
|
total_k = sum(k_sizes)
|
|
|
|
def test_func():
|
|
deep_gemm.k_grouped_wgrad_gemm_fp8_fp8_fp32_nt(x_fp8, y_fp8, out, k_sizes)
|
|
|
|
t = bench_kineto(test_func, 'fp8_wgrad_gemm', suppress_kineto_output=True, with_multiple_kernels=True) * num_groups
|
|
print(f' > Performance ({num_groups=}, m={m:5}, n={n:5}, avg_k={total_k//num_groups:5}): {t * 1e6:4.0f} us | '
|
|
f'throughput: {2 * num_groups * m * n * (total_k/num_groups) / t / 1e12:4.0f} TFLOPS, '
|
|
f'{(m * total_k + n * total_k + num_groups * m * n * 2) / 1e9 / t:4.0f} GB/s')
|
|
print()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
torch.manual_seed(0)
|
|
random.seed(0)
|
|
|
|
print('Library path:')
|
|
print(f' > {deep_gemm.__path__}\n')
|
|
|
|
test_gemm()
|
|
test_m_grouped_gemm_contiguous()
|
|
test_m_grouped_gemm_masked()
|
|
|
|
test_wgrad_gemm()
|
|
test_k_grouped_wgrad_gemm()
|