DeepGEMM/deep_gemm/utils.py
ademeure 6cbff5778f Correctly flush L2, as reconstructing the tensors on every iteration effectively put them in the L2, and gave the GPU enough idle time to avoid thermal throttling in a potentially unrealistic way.
The previous behaviour is potentially representative of some use cases (e.g. previous kernel filling L2 with the data in a very specific way) but not standard benchmarking practice.
2025-03-15 20:46:24 +00:00

176 lines
6.2 KiB
Python

import os
import sys
import time
import torch
import torch.distributed as dist
def bench(fn, num_warmups: int = 5, num_tests: int = 10,
high_precision: bool = False):
# Flush L2 cache with 256 MB data
torch.cuda.synchronize()
cache = torch.empty(int(256e6 // 4), dtype=torch.int, device='cuda')
cache.zero_()
# Warmup
for _ in range(num_warmups):
fn()
# Add a large kernel to eliminate the CPU launch overhead
if high_precision:
x = torch.randn((8192, 8192), dtype=torch.float, device='cuda')
y = torch.randn((8192, 8192), dtype=torch.float, device='cuda')
x @ y
# Testing
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for i in range(num_tests):
fn()
end_event.record()
torch.cuda.synchronize()
return start_event.elapsed_time(end_event) / num_tests
class empty_suppress:
def __enter__(self):
return self
def __exit__(self, *_):
pass
class suppress_stdout_stderr:
def __enter__(self):
self.outnull_file = open(os.devnull, 'w')
self.errnull_file = open(os.devnull, 'w')
self.old_stdout_fileno_undup = sys.stdout.fileno()
self.old_stderr_fileno_undup = sys.stderr.fileno()
self.old_stdout_fileno = os.dup(sys.stdout.fileno())
self.old_stderr_fileno = os.dup(sys.stderr.fileno())
self.old_stdout = sys.stdout
self.old_stderr = sys.stderr
os.dup2(self.outnull_file.fileno(), self.old_stdout_fileno_undup)
os.dup2(self.errnull_file.fileno(), self.old_stderr_fileno_undup)
sys.stdout = self.outnull_file
sys.stderr = self.errnull_file
return self
def __exit__(self, *_):
sys.stdout = self.old_stdout
sys.stderr = self.old_stderr
os.dup2(self.old_stdout_fileno, self.old_stdout_fileno_undup)
os.dup2(self.old_stderr_fileno, self.old_stderr_fileno_undup)
os.close(self.old_stdout_fileno)
os.close(self.old_stderr_fileno)
self.outnull_file.close()
self.errnull_file.close()
def bench_kineto(fn, kernel_names, num_tests: int = 30, suppress_kineto_output: bool = False,
trace_path: str = None, barrier_comm_profiling: bool = False, flush_l2: bool = True):
# Conflict with Nsight Systems
using_nsys = os.environ.get('DG_NSYS_PROFILING', False)
# By default, flush L2 with an excessive 8GB memset to give the GPU some (literal) chill time without full idle
# this avoid thermal throttling while keeping DVFS at max clocks (slight gain vs sleep / more consistent on GH200)
sleep_between_tests = 0.0
flush_l2_size = int(8e9 // 4)
if os.environ.get('DG_BENCH_DISABLE_L2_FLUSH', False):
flush_l2 = False
if os.environ.get('DG_BENCH_POWER_LIMITED', False):
# if we want to be thermally limited, we need to run many iterations non-stop for a fairly long time
# and spend as little time as possible doing memset and other setup work (80MiB should be enough to flush L2)
num_tests = 2000
flush_l2_size = int(80e6 // 4)
sleep_val = os.environ.get('DG_BENCH_SLEEP_BETWEEN_TESTS', False)
if sleep_val:
try:
sleep_between_tests = float(sleep_val)
except ValueError:
pass # Keep default
# For some auto-tuning kernels with prints
fn()
# Profile
suppress = suppress_stdout_stderr if suppress_kineto_output and not using_nsys else empty_suppress
with suppress():
schedule = torch.profiler.schedule(wait=0, warmup=1, active=1, repeat=1) if not using_nsys else None
profiler = torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CUDA], schedule=schedule) if not using_nsys else empty_suppress()
with profiler:
for i in range(2):
# NOTES: use a large kernel and a barrier to eliminate the unbalanced CPU launch overhead
if barrier_comm_profiling:
lhs = torch.randn((8192, 8192), dtype=torch.float, device='cuda')
rhs = torch.randn((8192, 8192), dtype=torch.float, device='cuda')
lhs @ rhs
dist.all_reduce(torch.ones(1, dtype=torch.float, device='cuda'))
for _ in range(num_tests):
if sleep_between_tests > 0.0:
time.sleep(sleep_between_tests)
if flush_l2:
torch.empty(flush_l2_size, dtype=torch.int, device='cuda').zero_()
fn()
if not using_nsys:
profiler.step()
# Return 1 if using Nsight Systems
if using_nsys:
return 1
# Parse the profiling table
assert isinstance(kernel_names, str) or isinstance(kernel_names, tuple)
is_tupled = isinstance(kernel_names, tuple)
prof_lines = profiler.key_averages().table(sort_by='cuda_time_total', max_name_column_width=100).split('\n')
kernel_names = (kernel_names, ) if isinstance(kernel_names, str) else kernel_names
assert all([isinstance(name, str) for name in kernel_names])
for name in kernel_names:
assert sum([name in line for line in prof_lines]) == 1, f'Errors of the kernel {name} in the profiling table'
# Save chrome traces
if trace_path is not None:
profiler.export_chrome_trace(trace_path)
# Return average kernel times
units = {'ms': 1e3, 'us': 1e6}
kernel_times = []
for name in kernel_names:
for line in prof_lines:
if name in line:
time_str = line.split()[-2]
for unit, scale in units.items():
if unit in time_str:
kernel_times.append(float(time_str.replace(unit, '')) / scale)
break
break
return tuple(kernel_times) if is_tupled else kernel_times[0]
def calc_diff(x, y):
x, y = x.double(), y.double()
denominator = (x * x + y * y).sum()
sim = 2 * (x * y).sum() / denominator
return 1 - sim
def count_bytes(tensors):
total = 0
for t in tensors:
if isinstance(t, tuple):
total += count_bytes(t)
else:
total += t.numel() * t.element_size()
return total