DeepGEMM/deep_gemm/jit_kernels/m_grouped_gemm.py

187 lines
9.2 KiB
Python

import torch
from typing import Tuple
from .gemm import get_best_configs
from .tuner import jit_tuner
from .utils import get_col_major_tma_aligned_tensor, get_num_sms
# C++ code templates
includes = ('"deep_gemm/fp8_gemm.cuh"', )
template = """
using namespace deep_gemm;
// Templated args from Python JIT call
constexpr auto N = {N}, K = {K};
constexpr auto BLOCK_M = {BLOCK_M};
constexpr auto BLOCK_N = {BLOCK_N};
constexpr auto kNumStages = {NUM_STAGES};
constexpr auto kNumTMAMulticast = {NUM_TMA_MULTICAST};
// Make a templated grouped GEMM
using GemmType = Gemm<N, K, BLOCK_M, BLOCK_N, 128, {NUM_GROUPS}, kNumStages, kNumTMAMulticast, GemmType::{GEMM_TYPE}>;
// Launch kernel
auto tma_a_desc = GemmType::make_2d_tma_a_desc(lhs, m);
auto tma_b_desc = GemmType::make_2d_tma_b_desc(rhs);
auto tma_scales_a_desc = GemmType::make_2d_tma_scales_a_desc(lhs_scales, m);
auto tma_d_desc = GemmType::make_2d_tma_d_desc(out, m);
GemmType::run(out, rhs_scales, grouped_layout,
m,
tma_a_desc, tma_b_desc, tma_scales_a_desc, tma_d_desc,
stream, n_block, smem_size);
"""
def m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(lhs: Tuple[torch.Tensor, torch.Tensor],
rhs: Tuple[torch.Tensor, torch.Tensor],
out: torch.Tensor, m_indices: torch.Tensor) -> None:
"""
Do a grouped GEMM (contiguous format) with FP8 inputs and BF16 output, with 1x128 LHS scaling and 128x128 RHS scaling.
LHS, RHS, RHS scaling factors, and output tensors must be in contiguous format.
RHS and RHS scaling factors are required to be transposed.
The LHS scaling tensor requires TMA-aligned transposed format, if your input does not match the requirement,
this function will do a transposing with a set of slow PyTorch operations.
On the M axis, inputs are grouped into several batches, of which batch sizes aligned to
`get_m_alignment_for_contiguous_layout()` (128).
Arguments:
lhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[m_sum, k]`,
the second element is an FP32 1x128 scaling tensor for LHS of shape `[m_sum, ⌈k / 128⌉]`.
rhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[num_groups, n, k]`.
the second element is an FP32 128x128 scaling tensor for RHS of shape `[num_groups, ⌈n / 128⌉, ⌈k / 128⌉]`.
out: the BF16 output tensor of shape `[m_sum, n]`, representing the result.
m_indices: a tensor of shape `[m_sum]` with type `torch.int`.
`m_indices[i]` records the group which the j-th row of the LHS belong to,
which means that the i-th row of the LHS matrix will be multiplied with `rhs[m_indices[i]]`.
Values of `m_indices` in every-m-alignment-block must also be the same.
"""
lhs, lhs_scales = lhs
rhs, rhs_scales = rhs
m, k = lhs.shape
num_groups, n, k_ = rhs.shape
m_, n_ = out.shape
m__ = m_indices.numel()
# Type and shape checks
assert m == m_ == m__ and k == k_ and n == n_
assert lhs_scales.shape == (m, (k + 127) // 128)
assert rhs_scales.shape == (num_groups, (n + 127) // 128, (k + 127) // 128)
assert lhs.dtype == torch.float8_e4m3fn and lhs_scales.dtype == torch.float32
assert rhs.dtype == torch.float8_e4m3fn and rhs_scales.dtype == torch.float32
assert out.dtype == torch.bfloat16
assert m_indices.dtype == torch.int32
assert lhs.is_contiguous() and rhs.is_contiguous()
assert out.is_contiguous() and m_indices.is_contiguous()
# LHS scales must be transposed for TMA load, but not for RHS scales
lhs_scales = get_col_major_tma_aligned_tensor(lhs_scales)
assert rhs_scales.is_contiguous()
# Do nothing if `m` is zero
if m == 0:
return
# Auto-tuning with compilation
global includes, template
num_sms = get_num_sms()
block_m, block_n, n_block, num_stages, num_tma_multicast, smem_size = get_best_configs(m, n, k, 1, num_sms,
is_grouped_contiguous=True)
args = (lhs, lhs_scales, rhs, rhs_scales, out,
m_indices, m, num_groups,
torch.cuda.current_stream(), n_block, smem_size)
runtime = jit_tuner.compile_and_tune(
name='m_grouped_gemm_fp8_fp8_bf16_nt',
keys={'N': n, 'K': k, 'BLOCK_M': block_m, 'BLOCK_N': block_n, 'NUM_GROUPS': num_groups,
'NUM_STAGES': num_stages, 'NUM_TMA_MULTICAST': num_tma_multicast, 'GEMM_TYPE': 'GroupedContiguous'},
space=(),
includes=includes,
arg_defs=(('lhs', torch.float8_e4m3fn), ('lhs_scales', torch.float),
('rhs', torch.float8_e4m3fn), ('rhs_scales', torch.float),
('out', torch.bfloat16),
('grouped_layout', torch.int32), ('m', int), ('num_groups', int),
('stream', torch.cuda.Stream), ('n_block', int), ('smem_size', int)),
template=template,
args=args
)
# Run the kernel
runtime(*args)
def m_grouped_gemm_fp8_fp8_bf16_nt_masked(lhs: Tuple[torch.Tensor, torch.Tensor],
rhs: Tuple[torch.Tensor, torch.Tensor],
out: torch.Tensor, masked_m: torch.Tensor, expected_m: int) -> None:
"""
Do a grouped GEMM (masked format) with FP8 inputs and BF16 output, with 1x128 LHS scaling and 128x128 RHS scaling.
LHS, RHS, RHS scaling factors, and output tensors must be in contiguous format.
RHS and RHS scaling factors are required to be transposed.
The LHS scaling tensor requires TMA-aligned transposed format, if your input does not match the requirement,
this function will do a transposing with a set of slow PyTorch operations.
Moreover, this alignment requirement is different with the contiguous-format kernel, as we require that each batch
should be separately transposed.
Arguments:
lhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[num_groups, m_max, k]`,
the second element is an FP32 1x128 scaling tensor for LHS of shape `[num_groups, m_max, ⌈k / 128⌉]`.
rhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[num_groups, n, k]`.
the second element is an FP32 128x128 scaling tensor for RHS of shape `[num_groups, ⌈n / 128⌉, ⌈k / 128⌉]`.
out: the BF16 output tensor of shape `[num_groups, m_max, n]`, representing the result.
masked_m: a tensor of shape `[num_groups]`, `masked_m[i]` records actual rows of the `lhs[i]` matrix to compute
in the i-th group.
expected_m: a value hint (which is a value on CPU) for the M expectation of each batch,
correctly setting this value may lead to better performance.
"""
lhs, lhs_scales = lhs
rhs, rhs_scales = rhs
num_groups, m, k = lhs.shape
num_groups_, n, k_ = rhs.shape
num_groups__, m_, n_ = out.shape
num_groups___ = masked_m.numel()
# Type and shape checks
assert num_groups == num_groups_ == num_groups__ == num_groups___
assert m == m_ and n == n_ and k == k_
assert expected_m > 0 and m > 0 and n > 0 and k > 0 and num_groups > 0
assert lhs_scales.shape == (num_groups, m, (k + 127) // 128)
assert rhs_scales.shape == (num_groups, (n + 127) // 128, (k + 127) // 128)
assert lhs.dtype == torch.float8_e4m3fn and lhs_scales.dtype == torch.float32
assert rhs.dtype == torch.float8_e4m3fn and rhs_scales.dtype == torch.float32
assert out.dtype == torch.bfloat16
assert masked_m.dtype == torch.int32
assert lhs.is_contiguous() and rhs.is_contiguous()
assert out.is_contiguous() and masked_m.is_contiguous()
# LHS scales must be transposed for TMA load, but not for RHS scales
lhs_scales = get_col_major_tma_aligned_tensor(lhs_scales)
assert rhs_scales.is_contiguous()
# Auto-tuning with compilation
global includes, template
num_sms = get_num_sms()
block_m, block_n, n_block, num_stages, num_tma_multicast, smem_size = get_best_configs(expected_m, n, k, num_groups, num_sms)
# Extra checks for TMA store
if num_groups > 1 and m > block_m:
assert m % block_m == 0, f'For masked grouped GEMM, shape M should be multiple of the block M (current block M: {block_m})'
args = (lhs, lhs_scales, rhs, rhs_scales, out,
masked_m, m,
torch.cuda.current_stream(), n_block, smem_size)
runtime = jit_tuner.compile_and_tune(
name='m_grouped_gemm_fp8_fp8_bf16_nt',
keys={'N': n, 'K': k, 'BLOCK_M': block_m, 'BLOCK_N': block_n, 'NUM_GROUPS': num_groups,
'NUM_STAGES': num_stages, 'NUM_TMA_MULTICAST': num_tma_multicast, 'GEMM_TYPE': 'GroupedMasked'},
space=(),
includes=includes,
arg_defs=(('lhs', torch.float8_e4m3fn), ('lhs_scales', torch.float),
('rhs', torch.float8_e4m3fn), ('rhs_scales', torch.float),
('out', torch.bfloat16),
('grouped_layout', torch.int32), ('m', int),
('stream', torch.cuda.Stream), ('n_block', int), ('smem_size', int)),
template=template,
args=args
)
# Run the kernel
runtime(*args)