DeepGEMM/deep_gemm/jit_kernels/m_grouped_gemm.py
2025-05-15 16:48:32 +08:00

206 lines
10 KiB
Python

import torch
from typing import Tuple
from ..jit import build
from .gemm import get_best_configs
from .runtime import (
FP8GemmRuntime, GemmType,
make_2d_tma_a_desc, make_2d_tma_b_desc,
make_2d_tma_d_desc, make_2d_tma_scales_desc)
from .utils import ceil_div, get_col_major_tma_aligned_tensor, get_num_sms
def m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(lhs: Tuple[torch.Tensor, torch.Tensor],
rhs: Tuple[torch.Tensor, torch.Tensor],
out: torch.Tensor, m_indices: torch.Tensor) -> None:
"""
Perform a grouped GEMM (contiguous format) with FP8 inputs and BF16 output, with 1x128 LHS scaling and 128x128 RHS scaling.
Requirements:
LHS, RHS, RHS scaling factors, and output tensors must be in contiguous format.
RHS and RHS scaling factors are required to be transposed.
The LHS scaling tensor requires a TMA-aligned transposed format, if your input does not match the requirement,
this function will do a transposing with a set of slow PyTorch operations.
On the M axis, inputs are grouped into several batches, of which batch sizes aligned to
`get_m_alignment_for_contiguous_layout()` (128).
Arguments:
lhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[m_sum, k]`,
the second element is an FP32 1x128 scaling tensor for LHS of shape `[m_sum, ⌈k / 128⌉]`.
rhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[num_groups, n, k]`,
the second element is an FP32 128x128 scaling tensor for RHS of shape `[num_groups, ⌈n / 128⌉, ⌈k / 128⌉]`.
out: the BF16 output tensor of shape `[m_sum, n]`, representing the result.
m_indices: a tensor of shape `[m_sum]` with type `torch.int`.
`m_indices[i]` records the group which the i-th row of the LHS belongs to,
which means that the i-th row of the LHS matrix will be multiplied with `rhs[m_indices[i]]`.
Values of `m_indices` in every-m-alignment-block must also be the same.
"""
lhs, lhs_scales = lhs
rhs, rhs_scales = rhs
m, k = lhs.shape
num_groups, n, k_ = rhs.shape
m_, n_ = out.shape
m__ = m_indices.numel()
# Type and shape checks
assert m == m_ == m__ and k == k_ and n == n_
assert lhs_scales.shape == (m, ceil_div(k, 128))
assert rhs_scales.shape == (num_groups, ceil_div(n, 128), ceil_div(k, 128))
assert lhs.dtype == torch.float8_e4m3fn and lhs_scales.dtype == torch.float32
assert rhs.dtype == torch.float8_e4m3fn and rhs_scales.dtype == torch.float32
assert out.dtype == torch.bfloat16
assert m_indices.dtype == torch.int32
assert lhs.is_contiguous() and rhs.is_contiguous()
assert out.is_contiguous() and m_indices.is_contiguous()
# LHS scales must be transposed for TMA load, but not for RHS scales
lhs_scales = get_col_major_tma_aligned_tensor(lhs_scales)
assert rhs_scales.is_contiguous()
# Do nothing if `m` is zero
if m == 0:
return
# Auto-tuning with compilation
num_sms = get_num_sms()
num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(
m, n, k, 1, num_sms, is_grouped_contiguous=True)
block_k = 128
num_tma_threads = 128
num_math_threads_per_group = 128
tensor_map_a = make_2d_tma_a_desc(GemmType.GroupedContiguous, lhs, m, k, k, block_m, block_k, num_groups)
tensor_map_b = make_2d_tma_b_desc(GemmType.GroupedContiguous, rhs, n, k, k, block_n, block_k, num_groups)
tensor_map_d = make_2d_tma_d_desc(GemmType.GroupedContiguous, out, m, n, n, block_m, block_n, num_groups, smem_config[1])
tensor_map_scales_a = make_2d_tma_scales_desc(GemmType.GroupedContiguous, lhs_scales, m, k, block_m, block_k, num_groups)
kwargs = {
# Templated arguments
'NUM_TMA_THREADS': num_tma_threads,
'NUM_MATH_THREADS_PER_GROUP': num_math_threads_per_group,
'M': m, 'N': n, 'K': k,
'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k,
'SWIZZLE_D_MODE': smem_config[1],
'BLOCK_N_PADDING': smem_config[2],
'NUM_GROUPS': num_groups,
'NUM_STAGES': num_stages,
'NUM_TMA_MULTICAST': tma_multicast_config[0],
'IS_TMA_MULTICAST_ON_A': tma_multicast_config[1],
'GEMM_TYPE': GemmType.GroupedContiguous,
# Runtime arguments
'SCALES_B': rhs_scales,
'GROUPED_LAYOUT': m_indices,
'NUM_SMS': num_sms,
'SMEM_SIZE': smem_config[0],
'TENSOR_MAP_A': tensor_map_a,
'TENSOR_MAP_B': tensor_map_b,
'TENSOR_MAP_SCALES_A': tensor_map_scales_a,
'TENSOR_MAP_D': tensor_map_d,
'STREAM': torch.cuda.current_stream().cuda_stream,
'DEVICE_INDEX': out.device.index
}
# Generate, build and run the kernel
code = FP8GemmRuntime.generate(**kwargs)
runtime = build('m_grouped_gemm_fp8_fp8_bf16_nt', code, FP8GemmRuntime, kwargs)
runtime(**kwargs)
def m_grouped_gemm_fp8_fp8_bf16_nt_masked(lhs: Tuple[torch.Tensor, torch.Tensor],
rhs: Tuple[torch.Tensor, torch.Tensor],
out: torch.Tensor, masked_m: torch.Tensor, expected_m: int) -> None:
"""
Perform a grouped GEMM (masked format) with FP8 inputs and BF16 output, with 1x128 LHS scaling and 128x128 RHS scaling.
Requirements:
LHS, RHS, RHS scaling factors, and output tensors must be in contiguous format.
RHS and RHS scaling factors are required to be transposed.
The LHS scaling tensor requires a TMA-aligned transposed format, if your input does not match the requirement,
this function will do a transposing with a set of slow PyTorch operations.
Moreover, this alignment requirement is different with the contiguous-format kernel, as we require that each batch
should be separately transposed.
Arguments:
lhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[num_groups, m_max, k]`,
the second element is an FP32 1x128 scaling tensor for LHS of shape `[num_groups, m_max, ⌈k / 128⌉]`.
rhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[num_groups, n, k]`.
The second element is an FP32 128x128 scaling tensor for RHS of shape `[num_groups, ⌈n / 128⌉, ⌈k / 128⌉]`.
out: the BF16 output tensor of shape `[num_groups, m_max, n]`, representing the result.
masked_m: a tensor of shape `[num_groups]`, `masked_m[i]` records actual rows of the `lhs[i]` matrix to compute
in the i-th group.
expected_m: a value hint (which is a value on CPU) for the M expectation of each batch,
correctly setting this value may lead to better performance.
"""
lhs, lhs_scales = lhs
rhs, rhs_scales = rhs
num_groups, m, k = lhs.shape
num_groups_, n, k_ = rhs.shape
num_groups__, m_, n_ = out.shape
num_groups___ = masked_m.numel()
# Type and shape checks
assert num_groups == num_groups_ == num_groups__ == num_groups___
assert m == m_ and n == n_ and k == k_
assert expected_m > 0 and m > 0 and n > 0 and k > 0 and num_groups > 0
assert lhs_scales.shape == (num_groups, m, ceil_div(k, 128))
assert rhs_scales.shape == (num_groups, ceil_div(n, 128), ceil_div(k, 128))
assert lhs.dtype == torch.float8_e4m3fn and lhs_scales.dtype == torch.float32
assert rhs.dtype == torch.float8_e4m3fn and rhs_scales.dtype == torch.float32
assert out.dtype == torch.bfloat16
assert masked_m.dtype == torch.int32
assert lhs.is_contiguous() and rhs.is_contiguous()
assert out.is_contiguous() and masked_m.is_contiguous()
# LHS scales must be transposed for TMA load, but not for RHS scales
lhs_scales = get_col_major_tma_aligned_tensor(lhs_scales)
assert rhs_scales.is_contiguous()
# Auto-tuning with compilation
num_sms = get_num_sms()
num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(
expected_m, n, k, num_groups, num_sms, is_grouped_masked=True)
# Extra checks for TMA store
if num_groups > 1 and m > block_m:
assert m % block_m == 0, f'For masked grouped GEMM, shape M should be multiple of the block M (current block M: {block_m})'
block_k = 128
num_tma_threads = 128
num_math_threads_per_group = 128
tensor_map_a = make_2d_tma_a_desc(GemmType.GroupedMasked, lhs, m, k, k, block_m, block_k, num_groups)
tensor_map_b = make_2d_tma_b_desc(GemmType.GroupedMasked, rhs, n, k, k, block_n, block_k, num_groups)
tensor_map_d = make_2d_tma_d_desc(GemmType.GroupedMasked, out, m, n, n, block_m, block_n, num_groups, smem_config[1])
tensor_map_scales_a = make_2d_tma_scales_desc(GemmType.GroupedMasked, lhs_scales, m, k, block_m, block_k, num_groups)
kwargs = {
# Templated arguments
'NUM_TMA_THREADS': num_tma_threads,
'NUM_MATH_THREADS_PER_GROUP': num_math_threads_per_group,
'M': m, 'N': n, 'K': k,
'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k,
'SWIZZLE_D_MODE': smem_config[1],
'BLOCK_N_PADDING': smem_config[2],
'NUM_GROUPS': num_groups,
'NUM_STAGES': num_stages,
'NUM_TMA_MULTICAST': tma_multicast_config[0],
'IS_TMA_MULTICAST_ON_A': tma_multicast_config[1],
'GEMM_TYPE': GemmType.GroupedMasked,
# Runtime arguments
'SCALES_B': rhs_scales,
'GROUPED_LAYOUT': masked_m,
'NUM_SMS': num_sms,
'SMEM_SIZE': smem_config[0],
'TENSOR_MAP_A': tensor_map_a,
'TENSOR_MAP_B': tensor_map_b,
'TENSOR_MAP_SCALES_A': tensor_map_scales_a,
'TENSOR_MAP_D': tensor_map_d,
'STREAM': torch.cuda.current_stream().cuda_stream,
'DEVICE_INDEX': out.device.index
}
# Generate, build and run the kernel
code = FP8GemmRuntime.generate(**kwargs)
runtime = build('m_grouped_gemm_fp8_fp8_bf16_nt', code, FP8GemmRuntime, kwargs)
runtime(**kwargs)