DeepGEMM/deep_gemm/jit/utils.py
Zihua Wu 27cd276e19 [wip] refactor: compile to .cubin
Signed-off-by: Zihua Wu <13583761+lucifer1004@users.noreply.github.com>
2025-04-22 08:08:40 +00:00

165 lines
7.7 KiB
Python

import ctypes
from enum import Enum
from typing import Any, Dict, Tuple
import cuda.bindings.driver as cuda
import torch
class Layout(Enum):
RowMajor = 0
ColMajor = 1
class GemmType(Enum):
Normal = 0
GroupedContiguous = 1
GroupedMasked = 2
def __str__(self) -> str:
return {
0: 'Normal',
1: 'GroupedContiguous',
2: 'GroupedMasked',
}[self.value]
typename_map: Dict[Any, str] = {
torch.int8: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
torch.int16: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT16,
torch.int32: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_INT32,
torch.int64: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_INT64,
torch.uint8: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
torch.uint16: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT16,
torch.uint32: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT32,
torch.uint64: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT64,
torch.float32: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_FLOAT32,
torch.float16: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_FLOAT16,
torch.bfloat16: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_BFLOAT16,
torch.float8_e4m3fn: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
torch.float8_e4m3fnuz: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
torch.float8_e5m2: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
torch.float8_e5m2fnuz: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
}
swizzle_map = {
128: cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_128B,
64: cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_64B,
32: cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_32B,
0: cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_NONE,
}
def get_num_math_warpgroups(block_m: int) -> int:
return 1 if block_m == 64 else 2
def get_num_threads_per_sm(num_tma_threads: int, num_math_threads_per_group: int, block_m: int) -> int:
assert num_math_threads_per_group == 128, "Only support 128 threads per math group"
return get_num_math_warpgroups(block_m) * num_math_threads_per_group + num_tma_threads
def make_2d_tma_copy_desc(global_address: torch.Tensor, gmem_dim: Tuple[cuda.cuuint64_t, cuda.cuuint64_t], stride_in_bytes: cuda.cuuint64_t, smem_dim: Tuple[cuda.cuuint32_t, cuda.cuuint32_t], swizzle_type: cuda.CUtensorMapSwizzle) -> cuda.CUtensorMap:
tensor_dtype = typename_map[global_address.dtype]
res, tensor_map = cuda.cuTensorMapEncodeTiled(
tensor_dtype,
2, # tensor rank
global_address.data_ptr(),
gmem_dim,
(stride_in_bytes,), # global strides
smem_dim,
(cuda.cuuint32_t(1), cuda.cuuint32_t(1)), # element strides
cuda.CUtensorMapInterleave.CU_TENSOR_MAP_INTERLEAVE_NONE,
swizzle_type,
cuda.CUtensorMapL2promotion.CU_TENSOR_MAP_L2_PROMOTION_L2_256B,
cuda.CUtensorMapFloatOOBfill.CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE,
)
if res != cuda.CUresult.CUDA_SUCCESS:
raise Exception(f"Failed to encode tensor map: {res}")
return tensor_map
def make_2d_tma_desc(global_address: torch.Tensor, layout: Layout, gmem_rows: int, gmem_cols: int, smem_rows: int, smem_cols: int, swizzle_type: cuda.CUtensorMapSwizzle = cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_128B) -> cuda.CUtensorMap:
if layout == Layout.RowMajor:
gmem_dim = (cuda.cuuint64_t(gmem_cols), cuda.cuuint64_t(gmem_rows))
smem_dim = (cuda.cuuint32_t(smem_cols), cuda.cuuint32_t(smem_rows))
return make_2d_tma_copy_desc(global_address, gmem_dim, cuda.cuuint64_t(gmem_cols * global_address.element_size()), smem_dim, swizzle_type)
else:
gmem_dim = (cuda.cuuint64_t(gmem_rows), cuda.cuuint64_t(gmem_cols))
smem_dim = (cuda.cuuint32_t(smem_rows), cuda.cuuint32_t(smem_cols))
return make_2d_tma_copy_desc(global_address, gmem_dim, cuda.cuuint64_t(gmem_rows * global_address.element_size()), smem_dim, swizzle_type)
def make_2d_tma_a_desc(gemm_type: GemmType, global_address: torch.Tensor, shape_m: int, shape_k: int, block_m: int, block_k: int, num_groups: int = 1) -> cuda.CUtensorMap:
return make_2d_tma_desc(global_address, Layout.RowMajor, shape_m * (num_groups if gemm_type == GemmType.GroupedMasked else 1), shape_k, block_m, block_k)
def make_2d_tma_b_desc(gemm_type: GemmType, global_address: torch.Tensor, shape_k: int, shape_n: int, block_k: int, block_n: int, num_groups: int = 1) -> cuda.CUtensorMap:
return make_2d_tma_desc(global_address, Layout.ColMajor, shape_k, shape_n * (num_groups if gemm_type != GemmType.Normal else 1), block_k, block_n)
def make_2d_tma_d_desc(gemm_type: GemmType, swizzle_mode: int, global_address: torch.Tensor, shape_m: int, shape_n: int, block_m: int, block_n: int, num_groups: int = 1) -> cuda.CUtensorMap:
# Swizzling requires the inner box dim less or equal than `kSwizzleDMode`
# bytes So `BLOCK_N * sizeof(T) / kSwizzleDMode` TMA stores are required
return make_2d_tma_desc(global_address, Layout.RowMajor, shape_m * (num_groups if gemm_type == GemmType.GroupedMasked else 1), shape_n, block_m, block_n if swizzle_mode == 0 else swizzle_mode // global_address.element_size(), swizzle_map[swizzle_mode])
def make_2d_tma_scales_a_desc(gemm_type: GemmType, global_address: torch.Tensor, shape_m: int, shape_k: int, block_m: int, block_k: int, num_groups: int = 1) -> cuda.CUtensorMap:
# Make TMA aligned to 16 bytes
kAlignment = 16 / global_address.element_size()
shape_m = (shape_m + kAlignment - 1) // kAlignment * kAlignment
return make_2d_tma_desc(global_address, Layout.ColMajor, shape_m, (shape_k + block_k - 1) // block_k * (num_groups if gemm_type == GemmType.GroupedMasked else 1), block_m, 1, cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_NONE)
def run_gemm(kernel: cuda.CUkernel, num_tma_multicast: int, shape_m: int, block_m: int, gmem_d: torch.Tensor, scales_b: torch.Tensor, grouped_layout: torch.Tensor, num_sms: int, smem_size: int, tensor_map_a: cuda.CUtensorMap, tensor_map_b: cuda.CUtensorMap, tensor_map_scales_a: cuda.CUtensorMap, tensor_map_d: cuda.CUtensorMap, stream: cuda.CUstream) -> cuda.CUresult:
num_tma_threads = 128
num_math_threads_per_group = 128
res = cuda.cuKernelSetAttribute(cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem_size, kernel, cuda.CUdevice(gmem_d.device.index))[0]
if res != cuda.CUresult.CUDA_SUCCESS:
raise Exception(f"Failed to set max dynamic shared memory size: {res}")
attr_val = cuda.CUlaunchAttributeValue()
attr_val.clusterDim.x = num_tma_multicast
attr_val.clusterDim.y = 1
attr_val.clusterDim.z = 1
attr = cuda.CUlaunchAttribute()
attr.id = cuda.CUlaunchAttributeID.CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION
attr.value = attr_val
config = cuda.CUlaunchConfig()
config.numAttrs = 1
config.attrs = [attr]
config.gridDimX = num_sms
config.gridDimY = 1
config.gridDimZ = 1
config.blockDimX = get_num_threads_per_sm(num_tma_threads, num_math_threads_per_group, block_m)
config.blockDimY = 1
config.blockDimZ = 1
config.sharedMemBytes = smem_size
config.hStream = stream
kernelValues = (
gmem_d.data_ptr(),
scales_b.data_ptr(),
grouped_layout.data_ptr(),
shape_m,
tensor_map_a,
tensor_map_b,
tensor_map_scales_a,
tensor_map_d,
)
kernelTypes = (
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_uint32,
None,
None,
None,
None,
)
return cuda.cuLaunchKernelEx(config, kernel, (kernelValues, kernelTypes), 0)