import torch from typing import Tuple from .tuner import jit_tuner from .utils import get_num_sms, ceil_div, get_col_major_tma_aligned_tensor, get_m_alignment_for_contiguous_layout # C++ code templates includes = ('"deep_gemm/fp8_gemm.cuh"', ) template = """ using namespace deep_gemm; // Templated args from Python JIT call constexpr auto N = {N}, K = {K}; constexpr auto BLOCK_M = {BLOCK_M}; constexpr auto BLOCK_N = {BLOCK_N}; constexpr auto kNumStages = {NUM_STAGES}; constexpr auto kNumTMAMulticast = {NUM_TMA_MULTICAST}; // Make a templated GEMM using GemmType = Gemm; // Launch kernel auto tma_a_desc = GemmType::make_2d_tma_a_desc(lhs, m); auto tma_b_desc = GemmType::make_2d_tma_b_desc(rhs); auto tma_scales_a_desc = GemmType::make_2d_tma_scales_a_desc(lhs_scales, m); auto tma_d_desc = GemmType::make_2d_tma_d_desc(out, m); GemmType::run(out, rhs_scales, nullptr, m, tma_a_desc, tma_b_desc, tma_scales_a_desc, tma_d_desc, stream, num_sms, smem_size); """ def is_tma_multicast_legal(n: int, block_n: int, num_tma_multicast: int, num_sms: int) -> bool: if num_tma_multicast == 1: return True return (n % (block_n * num_tma_multicast) == 0) and num_sms % num_tma_multicast == 0 def get_smem_size(num_stages: int, k: int, block_m: int, block_n: int, block_k: int = 128) -> int: smem_d = block_m * block_n * 2 smem_a_per_stage = block_m * block_k smem_scales_a_per_stage = block_m * 4 smem_b_per_stage = block_n * block_k smem_scales_b = ceil_div(k, block_k) * 4 smem_barrier = num_stages * 8 * 2 smem_size = 0 smem_size += smem_d smem_size += num_stages * smem_a_per_stage smem_size += num_stages * smem_scales_a_per_stage smem_size += num_stages * smem_b_per_stage smem_size += smem_scales_b * (1 if block_k % block_n == 0 else 2) smem_size += smem_barrier return smem_size def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int, is_grouped_contiguous: bool = False) -> Tuple[int, int, int, int, int]: if not is_grouped_contiguous: # TODO: for some cases, smaller M block is better, add them into tuning space block_ms = (64 if m <= 64 else 128, ) else: block_ms = (get_m_alignment_for_contiguous_layout(), ) block_ns = tuple(range(16, 129, 8)) fix_wave_saturate = lambda x: num_sms if x == 0 else x get_num_waves = lambda bm, bn: (ceil_div(ceil_div(m, bm) * ceil_div(n, bn) * num_groups, num_sms) if bm else None) get_last_wave_util = lambda bm, bn: fix_wave_saturate((ceil_div(m, bm) * ceil_div(n, bn) * num_groups) % num_sms) # Decide block sizes by waves best_block_m, best_block_n = None, None for block_m in block_ms: for block_n in block_ns: success = False num_waves, best_num_waves = get_num_waves(block_m, block_n), get_num_waves(best_block_m, best_block_n) if best_block_m is None or best_block_n is None: success = True elif num_waves < best_num_waves: success = True elif num_waves == best_num_waves: div_n = bool(128 % block_n) best_div_n = bool(128 % best_block_n) # Check last wave utilization util = get_last_wave_util(block_m, block_n) best_util = get_last_wave_util(best_block_m, best_block_n) success = util > best_util or (util == best_util and (block_m > best_block_m or block_m == best_block_m and (div_n < best_div_n or div_n == best_div_n and block_n < best_block_n))) best_block_m, best_block_n = (block_m, block_n) if success else (best_block_m, best_block_n) assert best_block_m is not None and best_block_n is not None # Always pick the longest one # NOTES: for double B scales, the best number of stages may be reduced best_num_stages, best_smem_size, sm90_capacity = None, None, 232448 for num_stages in (6, 5, 4) if 128 % best_block_n != 0 else (8, 7, 6, 5, 4): best_smem_size = get_smem_size(num_stages, k, best_block_m, best_block_n) if best_smem_size <= sm90_capacity: best_num_stages = num_stages break assert best_num_stages is not None # Decide the number of TMA multicast best_num_tma_multicast = 1 if m >= 1024 and is_tma_multicast_legal(n, best_block_n, 2, num_sms) and num_groups == 1: best_num_tma_multicast = 2 return best_block_m, best_block_n, best_num_stages, best_num_tma_multicast, best_smem_size def gemm_fp8_fp8_bf16_nt(lhs: Tuple[torch.Tensor, torch.Tensor], rhs: Tuple[torch.Tensor, torch.Tensor], out: torch.Tensor) -> None: """ Do a normal GEMM with FP8 inputs and BF16 output, with 1x128 LHS scaling and 128x128 RHS scaling. LHS, RHS, RHS scaling factors, and output tensors must be in contiguous format. RHS and RHS scaling factors are required to be transposed. The LHS scaling tensor requires TMA-aligned transposed format, if your input does not match the requirement, this function will do a transposing with a set of slow PyTorch operations. Arguments: lhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[m, k]`, the second element is an FP32 1x128 scaling tensor for LHS of shape `[m, ⌈k / 128⌉]`. rhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[n, k]`. the second element is an FP32 128x128 scaling tensor for RHS of shape `[⌈n / 128⌉, ⌈k / 128⌉]`. out: the BF16 output tensor of shape `[m, n]`, representing the result. """ lhs, lhs_scales = lhs rhs, rhs_scales = rhs m, k = lhs.shape n, k_ = rhs.shape m_, n_ = out.shape assert n % 64 == 0 and k % 128 == 0 # Type and shape checks assert m == m_ and n == n_ and k == k_ assert n > 0 and k > 0 assert lhs_scales.shape == (m, (k + 127) // 128) assert rhs_scales.shape == ((n + 127) // 128, (k + 127) // 128) assert lhs.dtype == torch.float8_e4m3fn and lhs_scales.dtype == torch.float32 assert rhs.dtype == torch.float8_e4m3fn and rhs_scales.dtype == torch.float32 assert out.dtype == torch.bfloat16 assert lhs.is_contiguous() and rhs.is_contiguous() and out.is_contiguous() # LHS scales must be transposed for TMA load, but not for RHS scales # NOTES: `get_tma_aligned_lhs_scales` may launch a kernel if not processed by previous kernels lhs_scales = get_col_major_tma_aligned_tensor(lhs_scales) assert rhs_scales.is_contiguous() # Do nothing if `m` is zero if m == 0: return # Auto-tuning with compilation global includes, template num_sms = get_num_sms() block_m, block_n, num_stages, num_tma_multicast, smem_size = get_best_configs(m, n, k, 1, num_sms) args = (lhs, lhs_scales, rhs, rhs_scales, out, m, torch.cuda.current_stream(), num_sms, smem_size) runtime = jit_tuner.compile_and_tune( name='gemm_fp8_fp8_bf16_nt', keys={'N': n, 'K': k, 'BLOCK_M': block_m, 'BLOCK_N': block_n, 'NUM_STAGES': num_stages, 'NUM_TMA_MULTICAST': num_tma_multicast}, space=(), includes=includes, arg_defs=(('lhs', torch.float8_e4m3fn), ('lhs_scales', torch.float), ('rhs', torch.float8_e4m3fn), ('rhs_scales', torch.float), ('out', torch.bfloat16), ('m', int), ('stream', torch.cuda.Stream), ('num_sms', int), ('smem_size', int)), template=template, args=args ) # Run the kernel runtime(*args)