import math import torch from functools import lru_cache from typing import Tuple from .tuner import jit_tuner from .utils import get_num_sms, ceil_div, get_col_major_tma_aligned_tensor, get_m_alignment_for_contiguous_layout # C++ code templates includes = ('"deep_gemm/fp8_gemm.cuh"', ) template = """ using namespace deep_gemm; // Templated args from Python JIT call constexpr auto N = {N}, K = {K}; constexpr auto BLOCK_M = {BLOCK_M}; constexpr auto BLOCK_N = {BLOCK_N}; constexpr auto BLOCK_K = 128; constexpr auto BLOCK_N_PADDING = {BLOCK_N_PADDING}; constexpr auto kSwizzleDMode = {SWIZZLE_D_MODE}; constexpr auto kNumGroups = 1; constexpr auto kNumStages = {NUM_STAGES}; constexpr auto kNumTMAMulticast = {NUM_TMA_MULTICAST}; constexpr auto kIsTMAMulticastOnA = {IS_TMA_MULTICAST_ON_A}; // Make a templated GEMM using gemm_t = Gemm; // Launch kernel auto tma_a_desc = gemm_t::make_2d_tma_a_desc(lhs, m); auto tma_b_desc = gemm_t::make_2d_tma_b_desc(rhs); auto tma_scales_a_desc = gemm_t::make_2d_tma_scales_a_desc(lhs_scales, m); auto tma_d_desc = gemm_t::make_2d_tma_d_desc(out, m); gemm_t::run(out, rhs_scales, nullptr, m, tma_a_desc, tma_b_desc, tma_scales_a_desc, tma_d_desc, stream, num_sms, smem_size); """ def is_tma_multicast_legal(shape_dim: int, block_dim: int, num_tma_multicast: int, num_sms: int, require_divisible: bool = False) -> bool: divisible = ceil_div(shape_dim, block_dim) % num_tma_multicast == 0 or not require_divisible return divisible and num_sms % num_tma_multicast == 0 def get_swizzle_mode(block_n: int) -> int: # TODO: remove some candidates if slow elem_size = 2 for mode_bytes in (128, 64, 32): if (block_n * elem_size) % mode_bytes == 0: return mode_bytes return 0 def get_block_n_padding_for_smem_d(block_n: int) -> int: # NOTES: padding is for solving bank conflicts, but wastes shared memory space elem_size, requirement = 2, (4, 8) bank_stride = (block_n * elem_size) // 4 padding = (requirement[0] - bank_stride) % requirement[1] return (((padding + requirement[1]) if padding < 0 else padding) * 4) // elem_size def get_smem_config(num_stages: int, k: int, block_m: int, block_n: int, block_k: int = 128) -> Tuple[int, int, int]: # Try swizzle first, as it does not waste shared memory swizzle_mode = get_swizzle_mode(block_n) block_n_padding = get_block_n_padding_for_smem_d(block_n) if swizzle_mode == 0 else 0 smem_d = block_m * (block_n + block_n_padding) * 2 smem_a_per_stage = block_m * block_k smem_scales_a_per_stage = block_m * 4 smem_b_per_stage = block_n * block_k smem_scales_b = ceil_div(k, block_k) * 4 smem_barrier = num_stages * 8 * 2 smem_size = 0 smem_size += smem_d smem_size += num_stages * smem_a_per_stage smem_size += num_stages * smem_scales_a_per_stage smem_size += num_stages * smem_b_per_stage smem_size += ceil_div(smem_scales_b * (1 if block_k % block_n == 0 else 2), 8) * 8 smem_size += smem_barrier # Swizzle and padding are not compatible assert int(swizzle_mode > 0) + int(block_n_padding > 0) <= 1 return smem_size, swizzle_mode, block_n_padding @lru_cache(maxsize=None) def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int, is_grouped_contiguous: bool = False, is_grouped_masked: bool = False) -> \ Tuple[int, int, int, int, Tuple[int, bool], Tuple[int, int, int]]: if not is_grouped_contiguous: block_ms = (64, 128, 256) else: block_ms = (get_m_alignment_for_contiguous_layout(), ) block_ns = tuple(range(16, 129, 8)) + (144, 160, ) fix_wave_saturate = lambda x: num_sms if x == 0 else x get_num_waves = lambda bm, bn: (ceil_div(ceil_div(m, bm) * ceil_div(n, bn) * num_groups, num_sms) if bm else None) get_last_wave_util = lambda bm, bn: fix_wave_saturate((ceil_div(m, bm) * ceil_div(n, bn) * num_groups) % num_sms) # Decide block sizes by waves best_block_m, best_block_n = None, None for block_m in block_ms: # NOTES: the block sizes can not be too large, so at least one dim less than 128 for block_n in filter(lambda bn: block_m <= 128 or bn <= 128, block_ns): success = False num_waves, best_num_waves = get_num_waves(block_m, block_n), get_num_waves(best_block_m, best_block_n) if best_block_m is None or best_block_n is None: success = True elif num_waves < best_num_waves: success = True elif num_waves == best_num_waves: # Check last wave utilization util = get_last_wave_util(block_m, block_n) best_util = get_last_wave_util(best_block_m, best_block_n) success = util > best_util if util == best_util: # Case 1: same `block_m`, smaller `block_n` (wasted) success |= block_m == best_block_m and block_n < best_block_n # Case 2: same `block_n`, smaller `block_m` (wasted) success |= block_n == best_block_n and block_m < best_block_m # Case 3: different for both `block_m` and `block_n`, `block_n` larger is better success |= block_m != best_block_m and block_n > best_block_n best_block_m, best_block_n = (block_m, block_n) if success else (best_block_m, best_block_n) assert best_block_m is not None and best_block_n is not None # Always pick the longest one # NOTES: for double B scales, the best number of stages may be reduced best_num_stages, best_smem_config, sm90_capacity = None, None, 232448 stage_candidates = (8, 7, 6, 5, 4, 3) if 128 % best_block_n != 0 and 128 // math.gcd(128, best_block_n) <= 4: # Unrolling both stages and `num_former_iters` will cause large code size stage_candidates = (4, 3) for num_stages in stage_candidates: best_smem_config = get_smem_config(num_stages, k, best_block_m, best_block_n) if best_smem_config[0] <= sm90_capacity: best_num_stages = num_stages break assert best_smem_config is not None assert best_num_stages is not None # Decide the number of TMA multicast and whether broadcast on A best_tma_multicast_config = (1, True) # Try to multicast on the larger block side first # NOTES: currently, grouped masked GEMM only supports multicast on A and requires the number of blocks in the N-direction to be even is_multicast_legal = { 'A': is_tma_multicast_legal(n, best_block_n, 2, num_sms, is_grouped_masked), 'B': is_tma_multicast_legal(m, best_block_m, 2, num_sms) and not is_grouped_masked, } for i in ('A', 'B') if best_block_m > best_block_n else ('B', 'A'): if m >= 512 and is_multicast_legal[i]: best_tma_multicast_config = (2, i == 'A') break # Recompute the minimal number of SMs required # NOTES: less L2 cache usage and less GPU frequency drop num_waves = get_num_waves(best_block_m, best_block_n) num_min_sms = ceil_div(ceil_div(m, best_block_m) * ceil_div(n, best_block_n) * num_groups, num_waves) num_min_sms = ceil_div(num_min_sms, best_tma_multicast_config[0]) * best_tma_multicast_config[0] assert num_min_sms <= num_sms return num_min_sms, best_block_m, best_block_n, best_num_stages, best_tma_multicast_config, best_smem_config def gemm_fp8_fp8_bf16_nt(lhs: Tuple[torch.Tensor, torch.Tensor], rhs: Tuple[torch.Tensor, torch.Tensor], out: torch.Tensor) -> None: """ Do a normal GEMM with FP8 inputs and BF16 output, with 1x128 LHS scaling and 128x128 RHS scaling. LHS, RHS, RHS scaling factors, and output tensors must be in contiguous format. RHS and RHS scaling factors are required to be transposed. The LHS scaling tensor requires TMA-aligned transposed format, if your input does not match the requirement, this function will do a transposing with a set of slow PyTorch operations. Arguments: lhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[m, k]`, the second element is an FP32 1x128 scaling tensor for LHS of shape `[m, ⌈k / 128⌉]`. rhs: the first element is an FP8 tensor (typed `torch.float8_e4m3fn`) of shape `[n, k]`. the second element is an FP32 128x128 scaling tensor for RHS of shape `[⌈n / 128⌉, ⌈k / 128⌉]`. out: the BF16 output tensor of shape `[m, n]`, representing the result. """ lhs, lhs_scales = lhs rhs, rhs_scales = rhs m, k = lhs.shape n, k_ = rhs.shape m_, n_ = out.shape assert n % 64 == 0 and k % 128 == 0 # Type and shape checks assert m == m_ and n == n_ and k == k_ assert n > 0 and k > 0 assert lhs_scales.shape == (m, (k + 127) // 128) assert rhs_scales.shape == ((n + 127) // 128, (k + 127) // 128) assert lhs.dtype == torch.float8_e4m3fn and lhs_scales.dtype == torch.float32 assert rhs.dtype == torch.float8_e4m3fn and rhs_scales.dtype == torch.float32 assert out.dtype == torch.bfloat16 assert lhs.is_contiguous() and rhs.is_contiguous() and out.is_contiguous() # LHS scales must be transposed for TMA load, but not for RHS scales # NOTES: `get_tma_aligned_lhs_scales` may launch a kernel if not processed by previous kernels lhs_scales = get_col_major_tma_aligned_tensor(lhs_scales) assert rhs_scales.is_contiguous() # Do nothing if `m` is zero if m == 0: return # Auto-tuning with compilation global includes, template num_sms = get_num_sms() num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(m, n, k, 1, num_sms) args = (lhs, lhs_scales, rhs, rhs_scales, out, m, torch.cuda.current_stream(), num_sms, smem_config[0]) runtime = jit_tuner.compile_and_tune( name='gemm_fp8_fp8_bf16_nt', keys={'N': n, 'K': k, 'BLOCK_M': block_m, 'BLOCK_N': block_n, 'SWIZZLE_D_MODE': smem_config[1], 'BLOCK_N_PADDING': smem_config[2], 'NUM_STAGES': num_stages, 'NUM_TMA_MULTICAST': tma_multicast_config[0], 'IS_TMA_MULTICAST_ON_A': tma_multicast_config[1]}, space=(), includes=includes, arg_defs=(('lhs', torch.float8_e4m3fn), ('lhs_scales', torch.float), ('rhs', torch.float8_e4m3fn), ('rhs_scales', torch.float), ('out', torch.bfloat16), ('m', int), ('stream', torch.cuda.Stream), ('num_sms', int), ('smem_size', int)), template=template, args=args ) # Run the kernel runtime(*args)