import pytest import random import torch from typing import Tuple import deep_gemm from deep_gemm import bench_kineto, calc_diff, ceil_div, get_col_major_tma_aligned_tensor # Set seeds and TF32 flags up front torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.manual_seed(0) random.seed(0) def per_token_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: assert x.dim() == 2 and x.size(1) % 128 == 0 m, n = x.shape x_view = x.view(m, -1, 128) x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4) return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(m, n), (x_amax / 448.0).view(m, -1) def per_block_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: assert x.dim() == 2 m, n = x.shape x_padded = torch.zeros((ceil_div(m, 128) * 128, ceil_div(n, 128) * 128), dtype=x.dtype, device=x.device) x_padded[:m, :n] = x x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128) x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4) x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn) return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2)) def construct(m: int, k: int, n: int) -> \ Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: x = torch.randn((m, k), device='cuda', dtype=torch.bfloat16) y = torch.randn((n, k), device='cuda', dtype=torch.bfloat16) out = torch.empty((m, n), device='cuda', dtype=torch.bfloat16) ref_out = x @ y.t() x_fp8, y_fp8 = per_token_cast_to_fp8(x), per_block_cast_to_fp8(y) # Transpose earlier so that the testing will not trigger transposing kernels x_fp8 = (x_fp8[0], get_col_major_tma_aligned_tensor(x_fp8[1])) return x_fp8, y_fp8, out, ref_out def construct_grouped(num_groups: int, m: int, k: int, n: int, is_masked: bool) -> \ Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: x = torch.randn((num_groups, m, k), device='cuda', dtype=torch.bfloat16) y = torch.randn((num_groups, n, k), device='cuda', dtype=torch.bfloat16) out = torch.empty((num_groups, m, n), device='cuda', dtype=torch.bfloat16) ref_out = torch.einsum('gmk,gnk->gmn', x, y) assert m % 4 == 0, f'TMA alignment error: {m}' x_fp8 = ( torch.empty_like(x, dtype=torch.float8_e4m3fn), torch.empty((num_groups, m, k // 128), device='cuda', dtype=torch.float) ) y_fp8 = ( torch.empty_like(y, dtype=torch.float8_e4m3fn), torch.empty((num_groups, (n + 127) // 128, k // 128), device='cuda', dtype=torch.float) ) for i in range(num_groups): x_fp8[0][i], x_fp8[1][i] = per_token_cast_to_fp8(x[i]) y_fp8[0][i], y_fp8[1][i] = per_block_cast_to_fp8(y[i]) # For non-masked input, we must merge the group and M dims if not is_masked: x_fp8 = (x_fp8[0].view(-1, k), per_token_cast_to_fp8(x.view(-1, k))[1]) out, ref_out = out.view(-1, n), ref_out.view(-1, n) # Transpose earlier so that the testing will not trigger transposing kernels x_fp8 = (x_fp8[0], get_col_major_tma_aligned_tensor(x_fp8[1])) return x_fp8, y_fp8, out, ref_out @pytest.mark.parametrize("m", [64, 128, 4096]) @pytest.mark.parametrize("k,n", [(7168, 2112), (1536, 24576), (512, 32768), (16384, 7168), (7168, 4096), (2048, 7168)]) def test_gemm(m, k, n): """Test single GEMM with various dimensions.""" x_fp8, y_fp8, out, ref_out = construct(m, k, n) deep_gemm.gemm_fp8_fp8_bf16_nt(x_fp8, y_fp8, out) diff = calc_diff(out, ref_out) assert diff < 0.001, f'GEMM mismatch: m={m}, k={k}, n={n}, diff={diff:.5f}' # (Optional) performance timing def test_func(): # Construct new tensors every time to avoid L2 cache effects x_fp8_local, y_fp8_local, out_local, _ = construct(m, k, n) deep_gemm.gemm_fp8_fp8_bf16_nt(x_fp8_local, y_fp8_local, out_local) t = bench_kineto(test_func, 'fp8_gemm', suppress_kineto_output=True) print(f'[test_gemm] (m={m:5}, n={n:5}, k={k:5}): {t * 1e6:6.0f} us | ' f'{2 * m * n * k / t / 1e12:5.2f} TFLOPS') @pytest.mark.parametrize("num_groups,m,k,n", [ (4, 8192, 7168, 4096), (4, 8192, 2048, 7168), (8, 4096, 7168, 4096), (8, 4096, 2048, 7168) ]) def test_m_grouped_gemm_contiguous(num_groups, m, k, n): """Test grouped GEMM with merged group+M dimension.""" x_fp8, y_fp8, out, ref_out = construct_grouped(num_groups, m, k, n, is_masked=False) m_indices = torch.arange(0, num_groups, device='cuda', dtype=torch.int) m_indices = m_indices.unsqueeze(-1).expand(num_groups, m).contiguous().view(-1) deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(x_fp8, y_fp8, out, m_indices) diff = calc_diff(out, ref_out) assert diff < 0.001, f'Grouped GEMM mismatch: m={m*num_groups}, k={k}, n={n}, diff={diff:.5f}' # (Optional) performance timing def test_func(): x_fp8_local, y_fp8_local, out_local, _ = construct_grouped(num_groups, m, k, n, is_masked=False) m_indices_local = torch.arange(0, num_groups, device='cuda', dtype=torch.int) m_indices_local = m_indices_local.unsqueeze(-1).expand(num_groups, m).contiguous().view(-1) deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(x_fp8_local, y_fp8_local, out_local, m_indices_local) t = bench_kineto(test_func, 'fp8_gemm', suppress_kineto_output=True) print(f'[test_m_grouped_gemm_contiguous] (groups={num_groups}, m={m}, n={n}, k={k}): ' f'{t * 1e6:6.0f} us | {2 * num_groups * m * n * k / t / 1e12:5.2f} TFLOPS') @pytest.mark.parametrize("num_groups,m", [ (1, 1024), (2, 512), (4, 256), ]) @pytest.mark.parametrize("k,n", [ (7168, 4096), (2048, 7168), ]) def test_m_grouped_gemm_masked(num_groups, m, k, n): """Test grouped GEMM where each group can have a different 'masked' M dimension.""" # Test correctness with random partial masks masked_m_candidates = list(filter(lambda candidate: candidate <= m, (64, 128, 192, 256, 320, 384))) for _ in range(10): x_fp8, y_fp8, out, ref_out = construct_grouped(num_groups, m, k, n, is_masked=True) masked_m = torch.empty((num_groups,), device='cuda', dtype=torch.int) for j in range(num_groups): masked_m[j] = random.choice(masked_m_candidates) # We pick an expected M that covers the average usage expected_m = min(int(masked_m.float().mean()) + 1, m) deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_masked(x_fp8, y_fp8, out, masked_m, expected_m) for j in range(num_groups): diff = calc_diff(out[j, :masked_m[j].item()], ref_out[j, :masked_m[j].item()]) assert diff < 0.001, ( f'Grouped Masked GEMM mismatch: m={m}, k={k}, n={n}, group={j}, ' f'masked_m={masked_m[j]}, groups={num_groups}, diff={diff:.5f}' ) # Test performance with full dimension (no actual mask) def test_func(): x_fp8_local, y_fp8_local, out_local, _ = construct_grouped(num_groups, m, k, n, is_masked=True) masked_m = torch.ones((num_groups,), device='cuda', dtype=torch.int) * m deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_masked(x_fp8_local, y_fp8_local, out_local, masked_m, m) t = bench_kineto(test_func, 'fp8_gemm', suppress_kineto_output=True) print(f'[test_m_grouped_gemm_masked] (groups={num_groups}, m={m}, n={n}, k={k}): ' f'{t * 1e6:6.0f} us | {2 * num_groups * m * n * k / t / 1e12:5.2f} TFLOPS')