diff --git a/deep_gemm/include/deep_gemm/fp8_gemm.cuh b/deep_gemm/include/deep_gemm/fp8_gemm.cuh index 711649c..f482300 100644 --- a/deep_gemm/include/deep_gemm/fp8_gemm.cuh +++ b/deep_gemm/include/deep_gemm/fp8_gemm.cuh @@ -109,7 +109,7 @@ fp8_gemm_kernel(__nv_bfloat16* gmem_d, float* scales_b, int* grouped_layout, } // Initialize barriers - DG_STATIC_ASSERT(kNumTMAMulticast <= 32, "To many TMA multicast"); + DG_STATIC_ASSERT(kNumTMAMulticast <= 32, "Too many TMA multicast"); if (threadIdx.x == kNumMathThreads) { #pragma unroll for (int i = 0; i < kNumStages; ++ i) { @@ -406,7 +406,8 @@ public: template static CUtensorMap make_2d_tma_d_desc(T* global_address, uint32_t shape_m) { return make_2d_tma_desc(global_address, Layout::RowMajor, - shape_m * (kGemmType == GemmType::GroupedMasked ? kNumGroups : 1), SHAPE_N, BLOCK_M, BLOCK_N, + shape_m * (kGemmType == GemmType::GroupedMasked ? kNumGroups : 1), SHAPE_N, + min(BLOCK_M, shape_m), BLOCK_N, CUtensorMapSwizzle::CU_TENSOR_MAP_SWIZZLE_NONE); } diff --git a/deep_gemm/jit/interleave_ffma.py b/deep_gemm/jit/interleave_ffma.py index d6b7fd5..74e8358 100644 --- a/deep_gemm/jit/interleave_ffma.py +++ b/deep_gemm/jit/interleave_ffma.py @@ -38,7 +38,7 @@ def extract_ffma(sass): current = [] if os.getenv('DG_PRINT_REG_REUSE', None): - print(f"Found {len(collected)} FFMA segments") + print(f'Found {len(collected)} FFMA segments') return collected @@ -58,7 +58,6 @@ def validate(m, offset, le_bytes, num_lines): def parse_registers(line): - import re line = re.sub(r'/\*.*?\*/', '', line) line = line.replace(';', '') tokens = line.strip().split(',') @@ -92,7 +91,7 @@ def modify_segment(m, name, ffma_lines): is_first_occurred = dst_reg not in dst_reg_set if is_first_occurred or (last_reused and dst_reg == last_dst_reg): # Modify the `reuse` and `yield` bits - assert high_hex & 0x0800200000000000, f"{hex(high_hex)}" + assert high_hex & 0x0800200000000000, f'{hex(high_hex)}' high_hex ^= 0x0800200000000000 reused = False num_changed += 1 @@ -102,7 +101,7 @@ def modify_segment(m, name, ffma_lines): new_le_bytes.append(low_hex.to_bytes(8, 'little') + high_hex.to_bytes(8, 'little')) last_reused, last_dst_reg = reused, dst_reg if os.getenv('DG_PRINT_REG_REUSE', None): - print(f" > segment `{name}` new reused list ({num_changed} changed): {reused_list}") + print(f' > segment `{name}` new reused list ({num_changed} changed): {reused_list}') # Find the offset offsets = [] @@ -130,7 +129,7 @@ def process(path): mm.close() -if __name__ == "__main__": +if __name__ == '__main__': parser = argparse.ArgumentParser(description='Interleave FFMA reg reuse') parser.add_argument('--so', help='Path to the SO file') args = parser.parse_args() diff --git a/deep_gemm/jit_kernels/gemm.py b/deep_gemm/jit_kernels/gemm.py index 1860b43..859eb34 100644 --- a/deep_gemm/jit_kernels/gemm.py +++ b/deep_gemm/jit_kernels/gemm.py @@ -79,10 +79,12 @@ def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int, elif num_waves < best_num_waves: success = True elif num_waves == best_num_waves: + div_n = bool(128 % block_n) + best_div_n = bool(128 % best_block_n) # Check last wave utilization util = get_last_wave_util(block_m, block_n) best_util = get_last_wave_util(best_block_m, best_block_n) - success = util > best_util or (util == best_util and (block_n >= best_block_n and block_m <= best_block_m)) + success = util > best_util or (util == best_util and (block_m > best_block_m or block_m == best_block_m and (div_n < best_div_n or div_n == best_div_n and block_n < best_block_n))) best_block_m, best_block_n = (block_m, block_n) if success else (best_block_m, best_block_n) assert best_block_m is not None and best_block_n is not None diff --git a/deep_gemm/jit_kernels/m_grouped_gemm.py b/deep_gemm/jit_kernels/m_grouped_gemm.py index 6d6e39b..28f838a 100644 --- a/deep_gemm/jit_kernels/m_grouped_gemm.py +++ b/deep_gemm/jit_kernels/m_grouped_gemm.py @@ -160,6 +160,11 @@ def m_grouped_gemm_fp8_fp8_bf16_nt_masked(lhs: Tuple[torch.Tensor, torch.Tensor] global includes, template num_sms = get_num_sms() block_m, block_n, num_stages, num_tma_multicast, smem_size = get_best_configs(expected_m, n, k, num_groups, num_sms) + + # Extra checks for TMA store + if num_groups > 1 and m > block_m: + assert m % block_m == 0, f'For masked grouped GEMM, shape M should be multiple of the block M (current block M: {block_m})' + args = (lhs, lhs_scales, rhs, rhs_scales, out, masked_m, m, torch.cuda.current_stream(), num_sms, smem_size)