This commit is contained in:
Gabriel Wu 2025-04-29 20:28:42 +08:00 committed by GitHub
commit 5acb5a9ec5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 855 additions and 563 deletions

View File

@ -18,7 +18,7 @@ Despite its lightweight design, DeepGEMM's performance matches or exceeds expert
- [x] MoE scheduler with TMA multicast compatibility
- [x] Fix TMA multicast compatibility for indivisible shapes
- [ ] Skip useless computation on M
- [ ] NVRTC as a faster compiler
- [x] NVRTC as a faster compiler
- [ ] Sanitizer for testing
- [ ] Weight gradient kernels for dense models
- [ ] Weight gradient kernels for MoE models

View File

@ -86,14 +86,14 @@ fp8_gemm_kernel(__nv_bfloat16* gmem_d, float* scales_b, int* grouped_layout,
// Prefetch TMA descriptors at very beginning
if (threadIdx.x == kNumMathThreads) {
cute::prefetch_tma_descriptor(&tensor_map_a);
cute::prefetch_tma_descriptor(&tensor_map_b);
cute::prefetch_tma_descriptor(&tensor_map_scales_a);
cute::prefetch_tma_descriptor(reinterpret_cast<const cute::TmaDescriptor*>(&tensor_map_a));
cute::prefetch_tma_descriptor(reinterpret_cast<const cute::TmaDescriptor*>(&tensor_map_b));
cute::prefetch_tma_descriptor(reinterpret_cast<const cute::TmaDescriptor*>(&tensor_map_scales_a));
// `tensor_map_d` is only used in swizzling mode
// For the `kSwizzleDMode == 0 and BLOCK_N_PADDING == 0` case, it will be treated as padding mode
if constexpr (kSwizzleDMode > 0)
cute::prefetch_tma_descriptor(&tensor_map_d);
cute::prefetch_tma_descriptor(reinterpret_cast<const cute::TmaDescriptor*>(&tensor_map_d));
}
__syncwarp();
@ -447,119 +447,6 @@ fp8_gemm_kernel(__nv_bfloat16* gmem_d, float* scales_b, int* grouped_layout,
#endif
}
template <uint32_t SHAPE_N, uint32_t SHAPE_K,
uint32_t BLOCK_M, uint32_t BLOCK_N, uint32_t BLOCK_K,
uint32_t BLOCK_N_PADDING,
uint32_t kSwizzleDMode,
uint32_t kNumGroups, uint32_t kNumStages,
uint32_t kNumTMAMulticast, bool kIsTMAMulticastOnA,
GemmType kGemmType>
class Gemm {
private:
using Barrier = cuda::barrier<cuda::thread_scope_block>;
public:
Gemm() = default;
static void run(__nv_bfloat16* gmem_d, float* scales_b, int* grouped_layout,
uint32_t shape_m,
const CUtensorMap& tma_a_desc,
const CUtensorMap& tma_b_desc,
const CUtensorMap& tma_scales_a_desc,
const CUtensorMap& tma_d_desc,
cudaStream_t stream,
int num_sms, uint32_t smem_size) {
// NOTES: we must use 4 warps to do TMA, because `setmaxnreg.aligned` requires 4 warps
constexpr uint32_t kNumTMAThreads = 128;
constexpr uint32_t kNumMathThreadsPerGroup = 128;
auto kernel = fp8_gemm_kernel<SHAPE_N, SHAPE_K,
BLOCK_M, BLOCK_N, BLOCK_K,
BLOCK_N_PADDING,
kSwizzleDMode,
kNumGroups, kNumStages,
kNumTMAThreads, kNumMathThreadsPerGroup,
kNumTMAMulticast, kIsTMAMulticastOnA, kGemmType>;
DG_HOST_ASSERT(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size) == cudaSuccess);
// Cluster launch
cudaLaunchConfig_t config;
config.gridDim = num_sms;
config.blockDim = get_num_threads_per_sm<kNumTMAThreads, kNumMathThreadsPerGroup>(BLOCK_M);
config.dynamicSmemBytes = smem_size;
config.stream = stream;
// Clusters for TMA multicast
// NOTES: `>= 4` cluster size will cause performance degradation
cudaLaunchAttribute attr;
attr.id = cudaLaunchAttributeClusterDimension;
attr.val.clusterDim = {kNumTMAMulticast, 1, 1};
config.attrs = &attr;
config.numAttrs = 1;
// Launch
auto status = cudaLaunchKernelEx(&config, kernel,
gmem_d, scales_b, grouped_layout,
shape_m,
tma_a_desc, tma_b_desc, tma_scales_a_desc, tma_d_desc);
DG_HOST_ASSERT(status == cudaSuccess);
}
template <typename T>
static CUtensorMap make_2d_tma_a_desc(T* global_address, uint32_t shape_m) {
return make_2d_tma_desc(global_address, Layout::RowMajor,
shape_m * (kGemmType == GemmType::GroupedMasked ? kNumGroups : 1), SHAPE_K, BLOCK_M, BLOCK_K);
}
template <typename T>
static CUtensorMap make_2d_tma_b_desc(T* global_address) {
return make_2d_tma_desc(global_address, Layout::ColMajor,
SHAPE_K, SHAPE_N * (kGemmType != GemmType::Normal ? kNumGroups : 1), BLOCK_K, BLOCK_N);
}
template <typename T>
static CUtensorMap make_2d_tma_d_desc(T* global_address, uint32_t shape_m) {
auto swizzle_mode = CUtensorMapSwizzle::CU_TENSOR_MAP_SWIZZLE_NONE;
if constexpr (kSwizzleDMode == 32) swizzle_mode = CU_TENSOR_MAP_SWIZZLE_32B;
if constexpr (kSwizzleDMode == 64) swizzle_mode = CU_TENSOR_MAP_SWIZZLE_64B;
if constexpr (kSwizzleDMode == 128) swizzle_mode = CU_TENSOR_MAP_SWIZZLE_128B;
// Swizzling requires the inner box dim less or equal than `kSwizzleDMode` bytes
// So `BLOCK_N * sizeof(T) / kSwizzleDMode` TMA stores are required
return make_2d_tma_desc(global_address, Layout::RowMajor,
shape_m * (kGemmType == GemmType::GroupedMasked ? kNumGroups : 1), SHAPE_N,
BLOCK_M, kSwizzleDMode == 0 ? BLOCK_N : kSwizzleDMode / sizeof(T),
swizzle_mode);
}
template <typename T>
static CUtensorMap make_2d_tma_scales_a_desc(T* global_address, uint32_t shape_m) {
// Make TMA aligned to 16 bytes
constexpr uint32_t kAlignment = 16 / sizeof(T);
shape_m = ceil_div(shape_m, kAlignment) * kAlignment;
return make_2d_tma_desc(global_address, Layout::ColMajor,
shape_m, ceil_div(SHAPE_K, BLOCK_K) * (kGemmType == GemmType::GroupedMasked ? kNumGroups : 1), BLOCK_M, 1,
CUtensorMapSwizzle::CU_TENSOR_MAP_SWIZZLE_NONE);
}
template <typename T>
static CUtensorMap make_2d_tma_desc(
T* global_address, Layout layout,
uint32_t gmem_rows, uint32_t gmem_cols,
uint32_t smem_rows, uint32_t smem_cols,
CUtensorMapSwizzle swizzle_type = CUtensorMapSwizzle::CU_TENSOR_MAP_SWIZZLE_128B) {
if (layout == Layout::RowMajor) {
uint64_t gmem_dim[2] = {gmem_cols, gmem_rows};
uint32_t smem_dim[2] = {smem_cols, smem_rows};
return make_2d_tma_copy_desc(global_address, gmem_dim, gmem_cols * sizeof(T), smem_dim, swizzle_type);
} else {
uint64_t gmem_dim[2] = {gmem_rows, gmem_cols};
uint32_t smem_dim[2] = {smem_rows, smem_cols};
return make_2d_tma_copy_desc(global_address, gmem_dim, gmem_rows * sizeof(T), smem_dim, swizzle_type);
}
}
};
}; // namespace deep_gemm
#pragma clang diagnostic pop

View File

@ -1,6 +1,8 @@
#pragma once
#ifndef NVRTC_JIT_COMPILATION
#include <cuda.h>
#endif
#include <cute/arch/mma_sm90_gmma.hpp>
#include <cute/arch/mma_sm90_gmma_ext.hpp>

View File

@ -0,0 +1,101 @@
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES.
* All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifdef NVRTC_JIT_COMPILATION
using int8_t = signed char;
using uint8_t = unsigned char;
using int16_t = signed short;
using uint16_t = unsigned short;
using int32_t = signed int;
using uint32_t = unsigned int;
using int64_t = signed long long;
using uint64_t = unsigned long long;
using cuuint64_t = unsigned long long;
#ifndef CU_TENSOR_MAP_NUM_QWORDS
#define CU_TENSOR_MAP_NUM_QWORDS 16
struct CUtensorMap_st
{
#if defined(__cplusplus) && (__cplusplus >= 201103L)
alignas(64)
#elif __STDC_VERSION__ >= 201112L
_Alignas(64)
#endif
cuuint64_t opaque[CU_TENSOR_MAP_NUM_QWORDS];
};
using CUtensorMap = CUtensorMap_st;
#endif
namespace std {
template <class T, T v> struct integral_constant {
static constexpr T value = v;
using value_type = T;
using type = integral_constant; // using injected-class-name
__device__ constexpr operator value_type() const noexcept { return value; }
__device__ constexpr value_type operator()() const noexcept {
return value;
} // since c++14
};
using false_type = integral_constant<bool, false>;
using true_type = integral_constant<bool, true>;
template <class T, class U> struct is_same : false_type {};
template <class T> struct is_same<T, T> : true_type {};
template <class T, class U>
inline constexpr bool is_same_v = is_same<T, U>::value;
namespace index_sequence_impl {
// Based on https://stackoverflow.com/a/32223343/11717224
template <size_t... Ints> struct index_sequence {
using type = index_sequence;
using value_type = size_t;
static constexpr size_t size() noexcept { return sizeof...(Ints); }
};
template <class Sequence1, class Sequence2> struct _merge_and_renumber;
template <size_t... I1, size_t... I2>
struct _merge_and_renumber<index_sequence<I1...>, index_sequence<I2...>>
: index_sequence<I1..., (sizeof...(I1) + I2)...> {};
template <size_t N>
struct make_index_sequence
: _merge_and_renumber<typename make_index_sequence<N / 2>::type,
typename make_index_sequence<N - N / 2>::type> {};
template <> struct make_index_sequence<0> : index_sequence<> {};
template <> struct make_index_sequence<1> : index_sequence<0> {};
} // namespace index_sequence_impl
template <size_t... Ns>
using index_sequence = index_sequence_impl::index_sequence<Ns...>;
template <size_t N>
using make_index_sequence = index_sequence_impl::make_index_sequence<N>;
} // namespace std
#endif

View File

@ -1,85 +1,18 @@
#pragma once
#ifndef NVRTC_JIT_COMPILATION
#include <cassert>
#include <cuda.h>
#include <cudaTypedefs.h>
#include <cuda_fp8.h>
#include <cuda_runtime.h>
#include <cudaTypedefs.h>
#endif
#include <cuda/barrier>
#include "utils.cuh"
namespace deep_gemm {
template <class T>
constexpr CUtensorMapDataType get_CUtensorMapDataType() {
if constexpr (std::is_same<T, uint8_t>::value) {
return CU_TENSOR_MAP_DATA_TYPE_UINT8;
} else if constexpr (std::is_same<T, __nv_fp8_e4m3>::value) {
return CU_TENSOR_MAP_DATA_TYPE_UINT8;
} else if constexpr (std::is_same<T, __nv_fp8_e5m2>::value) {
return CU_TENSOR_MAP_DATA_TYPE_UINT8;
} else if constexpr (std::is_same<T, uint16_t>::value) {
return CU_TENSOR_MAP_DATA_TYPE_UINT16;
} else if constexpr (std::is_same<T, uint32_t>::value) {
return CU_TENSOR_MAP_DATA_TYPE_UINT32;
} else if constexpr (std::is_same<T, uint64_t>::value) {
return CU_TENSOR_MAP_DATA_TYPE_UINT64;
} else if constexpr (std::is_same<T, int32_t>::value) {
return CU_TENSOR_MAP_DATA_TYPE_INT32;
} else if constexpr (std::is_same<T, int64_t>::value) {
return CU_TENSOR_MAP_DATA_TYPE_INT64;
} else if constexpr (std::is_same<T, __half>::value) {
return CU_TENSOR_MAP_DATA_TYPE_FLOAT16;
} else if constexpr (std::is_same<T, float>::value) {
return CU_TENSOR_MAP_DATA_TYPE_FLOAT32;
} else if constexpr (std::is_same<T, __nv_bfloat16>::value) {
return CU_TENSOR_MAP_DATA_TYPE_BFLOAT16;
} else if constexpr (std::is_same<T, double>::value) {
return CU_TENSOR_MAP_DATA_TYPE_FLOAT64;
}
}
inline PFN_cuTensorMapEncodeTiled get_cuTensorMapEncodeTiled() {
// Get pointer to `cuTensorMapEncodeTiled`
cudaDriverEntryPointQueryResult driver_status;
void* cuTensorMapEncodeTiled_ptr = nullptr;
#if CUDA_VERSION >= 12050
cudaGetDriverEntryPointByVersion("cuTensorMapEncodeTiled", &cuTensorMapEncodeTiled_ptr, 12000,
cudaEnableDefault, &driver_status);
#else
cudaGetDriverEntryPoint("cuTensorMapEncodeTiled", &cuTensorMapEncodeTiled_ptr,
cudaEnableDefault, &driver_status);
#endif
if (driver_status != cudaDriverEntryPointSuccess)
throw std::runtime_error("driver_status != cudaDriverEntryPointSuccess");
return reinterpret_cast<PFN_cuTensorMapEncodeTiled>(cuTensorMapEncodeTiled_ptr);
}
template <typename T>
CUtensorMap make_2d_tma_copy_desc(T* global_address, uint64_t gmem_dim[2],
uint64_t stride_in_bytes, uint32_t smem_dim[2],
CUtensorMapSwizzle swizzle_type,
PFN_cuTensorMapEncodeTiled encode_func = nullptr) {
CUtensorMap tensor_map = {};
uint64_t global_stride[1] = {stride_in_bytes};
uint32_t elem_strides[2] = {1, 1};
if (encode_func == nullptr)
encode_func = get_cuTensorMapEncodeTiled();
auto result = encode_func(
&tensor_map, get_CUtensorMapDataType<std::remove_cv_t<T>>(), 2,
global_address, gmem_dim, global_stride, smem_dim, elem_strides,
CUtensorMapInterleave::CU_TENSOR_MAP_INTERLEAVE_NONE, swizzle_type,
CUtensorMapL2promotion::CU_TENSOR_MAP_L2_PROMOTION_L2_256B,
CUtensorMapFloatOOBfill::CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE);
DG_HOST_ASSERT(result == CUDA_SUCCESS);
return tensor_map;
}
__device__ __forceinline__ void
tma_copy(void const* desc_ptr, uint64_t* barrier_ptr, void* smem_ptr,
int32_t const& crd_0, int32_t const& crd_1, uint32_t num_tma_multicast) {

View File

@ -1,5 +1,6 @@
#pragma once
#ifndef NVRTC_JIT_COMPILATION
#include <exception>
#ifdef __CLION_IDE__
@ -16,8 +17,12 @@ public:
const char *what() const noexcept override { return message.c_str(); }
};
#endif
#ifndef DG_HOST_ASSERT
#ifdef NVRTC_JIT_COMPILATION
#define DG_HOST_ASSERT(cond) ((void)0)
#else
#define DG_HOST_ASSERT(cond) \
do { \
if (not (cond)) { \
@ -27,6 +32,7 @@ do { \
} \
} while (0)
#endif
#endif
#ifndef DG_DEVICE_ASSERT
#define DG_DEVICE_ASSERT(cond) \

View File

@ -1,3 +1,3 @@
from .compiler import get_nvcc_compiler, build
from .template import cpp_format, generate
from .compiler import get_nvcc_compiler, build, NvccCompiler, NvrtcCompiler
from .template import generate
from .runtime import Runtime

View File

@ -1,15 +1,20 @@
import hashlib
import abc
import functools
import hashlib
import os
import platform
import re
import subprocess
import time
import uuid
from typing import List, Tuple, Type
import cuda.bindings
import cuda.bindings.nvrtc as nvrtc
from torch.utils.cpp_extension import CUDA_HOME
from typing import Tuple
from . import interleave_ffma
from .runtime import Runtime, RuntimeCache
from .template import typename_map
from .runtime import Runtime, Fp8GemmRuntime, RuntimeCache
runtime_cache = RuntimeCache()
@ -22,21 +27,22 @@ def hash_to_hex(s: str) -> str:
@functools.lru_cache(maxsize=None)
def get_jit_include_dir() -> str:
return f'{os.path.dirname(os.path.abspath(__file__))}/../include'
return os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'include')
@functools.lru_cache(maxsize=None)
def get_deep_gemm_version() -> str:
# Update include directories
include_dir = f'{get_jit_include_dir()}/deep_gemm'
assert os.path.exists(include_dir), f'Cannot find GEMM include directory {include_dir}'
include_dir = os.path.join(get_jit_include_dir(), 'deep_gemm')
assert os.path.exists(
include_dir), f'Cannot find GEMM include directory {include_dir}'
md5 = hashlib.md5()
for filename in filter(lambda x: x.endswith('.cuh'), sorted(os.listdir(include_dir))):
with open(f'{include_dir}/{filename}', 'rb') as f:
with open(os.path.join(include_dir, filename), 'rb') as f:
md5.update(f.read())
# Update `interleave_ffma.py`
with open(f'{os.path.dirname(os.path.realpath(__file__))}/interleave_ffma.py', 'rb') as f:
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'interleave_ffma.py'), 'rb') as f:
md5.update(f.read())
return md5.hexdigest()[0:12]
@ -46,14 +52,19 @@ def get_nvcc_compiler() -> Tuple[str, str]:
paths = []
if os.getenv('DG_NVCC_COMPILER'):
paths.append(os.getenv('DG_NVCC_COMPILER'))
paths.append(f'{CUDA_HOME}/bin/nvcc')
nvcc_bin = 'nvcc.exe' if platform.system() == 'Windows' else 'nvcc'
paths.append(os.path.join(CUDA_HOME, 'bin', nvcc_bin))
# Try to find the first available NVCC compiler
least_version_required = '12.3'
version_pattern = re.compile(r'release (\d+\.\d+)')
for path in paths:
if os.path.exists(path):
match = version_pattern.search(os.popen(f'{path} --version').read())
command = [path, '--version']
result = subprocess.run(command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, text=True)
match = version_pattern.search(result.stdout)
version = match.group(1)
assert match, f'Cannot get the version of NVCC compiler {path}'
assert version >= least_version_required, f'NVCC {path} version {version} is lower than {least_version_required}'
@ -67,17 +78,17 @@ def get_default_user_dir():
path = os.getenv('DG_CACHE_DIR')
os.makedirs(path, exist_ok=True)
return path
return os.path.expanduser('~') + '/.deep_gemm'
return os.path.join(os.path.expanduser('~'), '.deep_gemm')
@functools.lru_cache(maxsize=None)
def get_tmp_dir():
return f'{get_default_user_dir()}/tmp'
return os.path.join(get_default_user_dir(), 'tmp')
@functools.lru_cache(maxsize=None)
def get_cache_dir():
return f'{get_default_user_dir()}/cache'
return os.path.join(get_default_user_dir(), 'cache')
def make_tmp_dir():
@ -86,67 +97,195 @@ def make_tmp_dir():
return tmp_dir
def put(path, data, is_binary=False):
def put(path, data):
is_binary = isinstance(data, bytes)
# Write and do POSIX atomic replace
tmp_file_path = f'{make_tmp_dir()}/file.tmp.{str(uuid.uuid4())}.{hash_to_hex(path)}'
tmp_file_path = os.path.join(make_tmp_dir(), f'file.tmp.{str(uuid.uuid4())}.{hash_to_hex(path)}')
with open(tmp_file_path, 'wb' if is_binary else 'w') as f:
f.write(data)
os.replace(tmp_file_path, path)
def build(name: str, arg_defs: tuple, code: str) -> Runtime:
# Compiler flags
cpp_standard = int(os.getenv('DG_NVCC_OVERRIDE_CPP_STANDARD', 20))
nvcc_flags = [f'-std=c++{cpp_standard}', '-shared', '-O3', '--expt-relaxed-constexpr', '--expt-extended-lambda',
'-gencode=arch=compute_90a,code=sm_90a',
'--ptxas-options=--register-usage-level=10' + (',--verbose' if 'DG_PTXAS_VERBOSE' in os.environ else ''),
# Suppress some unnecessary warnings, such as unused variables for certain `constexpr` branch cases
'--diag-suppress=39,174,177,940']
cxx_flags = ['-fPIC', '-O3', '-Wno-deprecated-declarations', '-Wno-abi', '-fconcepts']
flags = [*nvcc_flags, f'--compiler-options={",".join(cxx_flags)}']
include_dirs = [get_jit_include_dir()]
class Compiler(abc.ABC):
@staticmethod
@abc.abstractmethod
def __version__() -> Tuple[int, int]:
pass
# Build signature
enable_sass_opt = get_nvcc_compiler()[1] <= '12.8' and int(os.getenv('DG_DISABLE_FFMA_INTERLEAVE', 0)) == 0
signature = f'{name}$${get_deep_gemm_version()}$${code}$${get_nvcc_compiler()}$${flags}$${enable_sass_opt}'
name = f'kernel.{name}.{hash_to_hex(signature)}'
path = f'{get_cache_dir()}/{name}'
@classmethod
@abc.abstractmethod
def compile(cls, name: str, code: str, target_path: str) -> str:
pass
# Check runtime cache or file system hit
global runtime_cache
if runtime_cache[path] is not None:
@staticmethod
def flags() -> List[str]:
cpp_standard = int(os.getenv('DG_NVCC_OVERRIDE_CPP_STANDARD', 20))
return [f'-std=c++{cpp_standard}',
'--ptxas-options=--register-usage-level=10' +
(',--verbose' if 'DG_PTXAS_VERBOSE' in os.environ else ''),
# Suppress some unnecessary warnings, such as unused variables for certain `constexpr` branch cases
'--diag-suppress=39,161,174,177,940']
@staticmethod
def include_dirs() -> List[str]:
return [get_jit_include_dir()]
@classmethod
def build(cls, name: str, code: str, runtime_cls: Type[Runtime] = Fp8GemmRuntime) -> Runtime:
# Compiler flags
flags = cls.flags()
# Build signature
enable_sass_opt = get_nvcc_compiler()[1] <= '12.8' and int(
os.getenv('DG_DISABLE_FFMA_INTERLEAVE', 0)) == 0
signature = f'{name}$${get_deep_gemm_version()}$${code}$${get_nvcc_compiler()}$${flags}$${enable_sass_opt}'
name = f'kernel.{name}.{hash_to_hex(signature)}'
path = os.path.join(get_cache_dir(), name)
# Check runtime cache or file system hit
global runtime_cache
cached_runtime = runtime_cache.get(path, runtime_cls)
if cached_runtime is not None:
if os.getenv('DG_JIT_DEBUG', None):
print(f'Using cached JIT runtime {name} during build')
return cached_runtime
# Compile into a temporary CU file
os.makedirs(path, exist_ok=True)
cubin_path = os.path.join(path, 'kernel.cubin')
tmp_cubin_path = os.path.join(make_tmp_dir(), f'nvcc.tmp.{str(uuid.uuid4())}.{hash_to_hex(cubin_path)}.cubin')
start_time = time.time()
cls.compile(name, code, tmp_cubin_path)
end_time = time.time()
elapsed_time = end_time - start_time
if os.getenv('DG_JIT_DEBUG', None):
print(f'Using cached JIT runtime {name} during build')
return runtime_cache[path]
print(
f'Compilation of JIT runtime {name} took {elapsed_time:.2f} seconds.')
# Write the code
os.makedirs(path, exist_ok=True)
args_path = f'{path}/kernel.args'
src_path = f'{path}/kernel.cu'
put(args_path, ', '.join([f"('{arg_def[0]}', {typename_map[arg_def[1]]})" for arg_def in arg_defs]))
put(src_path, code)
# Interleave FFMA reuse
if enable_sass_opt:
interleave_ffma.process(tmp_cubin_path)
# Atomic replace files
os.replace(tmp_cubin_path, cubin_path)
# Compile into a temporary SO file
so_path = f'{path}/kernel.so'
tmp_so_path = f'{make_tmp_dir()}/nvcc.tmp.{str(uuid.uuid4())}.{hash_to_hex(so_path)}.so'
# Put cache and return
runtime = runtime_cls(path)
runtime_cache[path] = runtime
return runtime
# Compile
command = [get_nvcc_compiler()[0],
src_path, '-o', tmp_so_path,
*flags,
*[f'-I{d}' for d in include_dirs]]
if os.getenv('DG_JIT_DEBUG', None) or os.getenv('DG_JIT_PRINT_NVCC_COMMAND', False):
print(f'Compiling JIT runtime {name} with command {command}')
return_code = subprocess.check_call(command)
assert return_code == 0, f'Failed to compile {src_path}'
# Interleave FFMA reuse
if enable_sass_opt:
interleave_ffma.process(tmp_so_path)
class NvccCompiler(Compiler):
@staticmethod
def __version__() -> Tuple[int, int]:
_, version = get_nvcc_compiler()
major, minor = map(int, version.split('.'))
return (major, minor)
# Atomic replace SO file
os.replace(tmp_so_path, so_path)
@classmethod
def flags(cls) -> List[str]:
if platform.system() != 'Windows':
cxx_flags = ['-fPIC', '-O3', '-fconcepts', '-Wno-deprecated-declarations', '-Wno-abi']
else:
cxx_flags = ['/O2', '/std:c++20']
return [*super().flags(), *[f'-I{d}' for d in cls.include_dirs()],
'-gencode=arch=compute_90a,code=sm_90a',
'-cubin', '-O3', '--expt-relaxed-constexpr', '--expt-extended-lambda',
f'--compiler-options={",".join(cxx_flags)}']
# Put cache and return
runtime_cache[path] = Runtime(path)
return runtime_cache[path]
@classmethod
def compile(cls, name: str, code: str, target_path: str):
# Write the code
path = os.path.join(get_cache_dir(), name)
src_path = os.path.join(path, 'kernel.cu')
put(src_path, code)
command = [get_nvcc_compiler()[0],
src_path, '-o', target_path,
*cls.flags()]
if os.getenv('DG_JIT_DEBUG', None) or os.getenv('DG_JIT_PRINT_NVCC_COMMAND', False):
print(f'Compiling JIT runtime {name} with command {command}')
result = subprocess.run(command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, text=True)
if os.getenv('DG_JIT_DEBUG', None):
print(result.stdout)
print(result.stderr)
assert result.returncode == 0, f'Failed to compile {src_path}'
class NvrtcCompiler(Compiler):
@staticmethod
def __version__() -> Tuple[int, int]:
res, major, minor = nvrtc.nvrtcVersion()
if res != nvrtc.nvrtcResult.NVRTC_SUCCESS:
# Failed to get actual NVRTC version, use bindings version instead
major, minor = map(int, cuda.bindings.__version__.split('.')[:2])
return (major, minor)
@staticmethod
def include_dirs() -> List[str]:
if CUDA_HOME is None:
raise RuntimeError('CUDA_HOME is required for NVRTC compilation')
return [get_jit_include_dir(), os.path.join(CUDA_HOME, 'include')]
@classmethod
def flags(cls) -> List[str]:
base_flags = [*super().flags(), *[f'-I{d}' for d in cls.include_dirs()],
'--gpu-architecture=sm_90a', '-default-device']
if cls.__version__() >= (12, 8):
base_flags += ['--pch']
if os.getenv('DG_JIT_DEBUG', None):
base_flags += ['--pch-verbose=true']
return base_flags
@classmethod
def compile(cls, name: str, code: str, target_path: str) -> str:
code_bytes = bytes(code, 'utf-8')
res, program = nvrtc.nvrtcCreateProgram(
code_bytes, bytes(name, 'utf-8'), 0, [], [])
if res != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise Exception(f'Failed to create program: {res}')
options = [bytes(flag, 'utf-8') for flag in cls.flags()]
compile_res = nvrtc.nvrtcCompileProgram(
program, len(options), options)[0]
if os.getenv('DG_JIT_DEBUG', None):
res, log_size = nvrtc.nvrtcGetProgramLogSize(program)
if res != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise Exception(f'Failed to get program log size: {res}')
log_bytes = bytes(log_size)
res = nvrtc.nvrtcGetProgramLog(program, log_bytes)[0]
if res != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise Exception(f'Failed to get program log: {res}')
log_str = log_bytes.decode('utf-8')
print(log_str)
if compile_res != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise Exception(f'Failed to compile program: {compile_res}')
res, cubin_size = nvrtc.nvrtcGetCUBINSize(program)
if res != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise Exception(f'Failed to get CUBIN size: {res}')
cubin_bytes = bytes(cubin_size)
res = nvrtc.nvrtcGetCUBIN(program, cubin_bytes)[0]
if res != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise Exception(f'Failed to get CUBIN: {res}')
put(target_path, cubin_bytes)
res = nvrtc.nvrtcDestroyProgram(program)[0]
if res != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise Exception(f'Failed to destroy program: {res}')
def build(name: str, code: str, runtime_cls: Type[Runtime] = Fp8GemmRuntime) -> Runtime:
if os.getenv('DG_JIT_USE_NVRTC', '0') in ['1', 'true', 'True']:
return NvrtcCompiler.build(name, code, runtime_cls=runtime_cls)
else:
return NvccCompiler.build(name, code, runtime_cls=runtime_cls)

View File

@ -1,17 +1,20 @@
import ctypes
import os
import torch
from typing import Optional
import time
from typing import Any, Callable, Dict, List, Optional, Type
from .template import map_ctype
import cuda.bindings.driver as cuda
from .utils import run_gemm
class Runtime:
def __init__(self, path: str) -> None:
def __init__(self, path: str, kernel_name: str, caller: Callable[..., cuda.CUresult], args: List[str]) -> None:
self.path = path
self.lib = None
self.args = None
self.kernel = None
self.kernel_name = kernel_name
self.caller = caller
self.args = args
assert self.is_path_valid(self.path)
@staticmethod
@ -21,46 +24,91 @@ class Runtime:
return False
# Contains all necessary files
files = ['kernel.cu', 'kernel.args', 'kernel.so']
files = ['kernel.cubin']
return all(os.path.exists(os.path.join(path, file)) for file in files)
def __call__(self, *args) -> int:
# Load SO file
if self.lib is None or self.args is None:
self.lib = ctypes.CDLL(os.path.join(self.path, 'kernel.so'))
with open(os.path.join(self.path, 'kernel.args'), 'r') as f:
self.args = eval(f.read())
def __call__(self, **kwargs: Dict[str, Any]) -> cuda.CUresult:
# Load CUBIN
if self.kernel is None:
start_time = time.time_ns()
res, lib = cuda.cuLibraryLoadFromFile(
bytes(os.path.join(self.path, 'kernel.cubin'), 'utf-8'), [], [], 0, [], [], 0)
if res != cuda.CUresult.CUDA_SUCCESS:
raise Exception(f'Failed to load library: {res}')
# Check args and launch
assert len(args) == len(self.args), f'Expected {len(self.args)} arguments, got {len(args)}'
cargs = []
for arg, (name, dtype) in zip(args, self.args):
if isinstance(arg, torch.Tensor):
assert arg.dtype == dtype, f'Expected tensor dtype `{dtype}` for `{name}`, got `{arg.dtype}`'
res, kernel_count = cuda.cuLibraryGetKernelCount(lib)
if res != cuda.CUresult.CUDA_SUCCESS:
raise Exception(f'Failed to get kernel count: {res}')
res, kernels = cuda.cuLibraryEnumerateKernels(kernel_count, lib)
if res != cuda.CUresult.CUDA_SUCCESS:
raise Exception(f'Failed to enumerate kernels: {res}')
for kernel in kernels:
res, kernel_name = cuda.cuKernelGetName(kernel)
if res != cuda.CUresult.CUDA_SUCCESS:
raise Exception(f'Failed to get kernel name: {res}')
if bytes(self.kernel_name, encoding='utf-8') in kernel_name:
self.kernel = kernel
break
if self.kernel is not None:
self.lib = lib
else:
assert isinstance(arg, dtype), f'Expected built-in type `{dtype}` for `{name}`, got `{type(arg)}`'
cargs.append(map_ctype(arg))
raise Exception('Failed to find required kernel')
return_code = ctypes.c_int(0)
self.lib.launch(*cargs, ctypes.byref(return_code))
return return_code.value
end_time = time.time_ns()
elapsed_time = (end_time - start_time) / 1000
if os.getenv('DG_JIT_DEBUG', None):
print(
f'Loading JIT runtime {self.path} took {elapsed_time:.2f} us.')
return self.caller(
self.kernel,
*[kwargs[arg] for arg in self.args]
)
def __del__(self) -> None:
if self.lib is not None:
res = cuda.cuLibraryUnload(self.lib)[0]
if res != cuda.CUresult.CUDA_SUCCESS:
raise Exception(f'Failed to unload library {self.path}: {res}')
class Fp8GemmRuntime(Runtime):
def __init__(self, path: str) -> None:
super().__init__(path, 'fp8_gemm', run_gemm, [
'NUM_TMA_MULTICAST',
'M',
'BLOCK_M',
'GMEM_D',
'SCALES_B',
'GROUPED_LAYOUT',
'NUM_SMS',
'SMEM_SIZE',
'TENSOR_MAP_A',
'TENSOR_MAP_B',
'TENSOR_MAP_SCALES_A',
'TENSOR_MAP_D',
'STREAM',
])
class RuntimeCache:
def __init__(self) -> None:
self.cache = {}
def __getitem__(self, path: str) -> Optional[Runtime]:
def __setitem__(self, path, runtime) -> None:
self.cache[path] = runtime
def get(self, path: str, runtime_cls: Type[Runtime] = Fp8GemmRuntime) -> Optional[Runtime]:
# In Python runtime
if path in self.cache:
return self.cache[path]
# Already compiled
if os.path.exists(path) and Runtime.is_path_valid(path):
runtime = Runtime(path)
runtime = runtime_cls(path)
self.cache[path] = runtime
return runtime
return None
def __setitem__(self, path, runtime) -> None:
self.cache[path] = runtime
return None

View File

@ -1,111 +1,48 @@
import copy
import ctypes
import os
import torch
from typing import Any, Dict, Iterable, Tuple
from typing import Any, Dict
# Name map for Python `eval`
typename_map: Dict[Any, str] = {
**{t: t.__name__ for t in (bool, int, float)},
torch.int: 'torch.int',
torch.float: 'torch.float',
torch.bfloat16: 'torch.bfloat16',
torch.float8_e4m3fn: 'torch.float8_e4m3fn',
torch.cuda.Stream: 'torch.cuda.Stream',
}
def generate(**kwargs: Dict[str, Any]) -> str:
code = f'''
#ifdef __CUDACC_RTC__
#ifndef NVRTC_JIT_COMPILATION
#define NVRTC_JIT_COMPILATION
#endif
# `ctype` map for Python casting
ctype_map: Dict[Any, Any] = {
**{t: getattr(ctypes, f'c_{t.__name__}') for t in (bool, int, float)},
**{t: ctypes.c_void_p for t in (torch.int, torch.float, torch.bfloat16, torch.float8_e4m3fn, torch.cuda.Stream)},
}
#include <deep_gemm/nvrtc_std.cuh>
#else
# Type map for both Python API and source code usages
genc_map = {
bool: ('bool', 'bool'),
int: ('int', 'int'),
float: ('float', 'float'),
torch.int: ('void*', 'int*'),
torch.float: ('void*', 'float*'),
torch.bfloat16: ('void*', '__nv_bfloat16*'),
torch.float8_e4m3fn: ('void*', '__nv_fp8_e4m3*'),
torch.cuda.Stream: ('void*', 'cudaStream_t'),
}
#include <string>
#include <cuda.h>
#endif
def map_ctype(value: Any) -> Any:
if hasattr(value, 'data_ptr'):
if value.dtype == torch.int:
return ctypes.c_void_p(value.data_ptr())
elif value.dtype == torch.float:
return ctypes.c_void_p(value.data_ptr())
elif value.dtype == torch.bfloat16:
return ctypes.c_void_p(value.data_ptr())
elif value.dtype == torch.float16:
return ctypes.c_void_p(value.data_ptr())
elif value.dtype == torch.float8_e4m3fn:
return ctypes.c_void_p(value.data_ptr())
else:
return ctypes.c_void_p(value.data_ptr())
#include <cuda_bf16.h>
#include <cuda_fp8.h>
#include <deep_gemm/fp8_gemm.cuh>
if hasattr(value, 'cuda_stream'):
return ctypes.c_void_p(value.cuda_stream)
using namespace deep_gemm;
if isinstance(value, bool):
return ctypes.c_bool(value)
elif isinstance(value, int):
return ctypes.c_int(value)
elif isinstance(value, float):
return ctypes.c_float(value)
return ctype_map[type(value)](value)
def cpp_format(template: str, keys: Dict[str, Any]) -> str:
# We don't use `str.format` because it's not safe for C++ {} braces
new_template = copy.deepcopy(template)
for key, value in keys.items():
value_str = str(value)
if isinstance(value, bool):
value_str = value_str.lower()
new_template = new_template.replace(f'{{{key}}}', f'{value_str}')
return new_template
def generate(includes: Iterable[str], arg_defs: Iterable[Tuple], body: str) -> str:
# Common prefix
code = '// DeepGEMM auto-generated JIT CUDA source file\n\n'
# Includes
preload_sys_includes = ['<cuda.h>', '<cuda_fp8.h>', '<cuda_runtime.h>', '<iostream>']
preload_package_includes = ['"cutlass/cutlass.h"']
assert isinstance(includes, list) or isinstance(includes, tuple)
sys_includes = sorted(list(set(preload_sys_includes + [include for include in includes if include.startswith('<')])))
package_includes = sorted(list(set(preload_package_includes + [include for include in includes if include.startswith('"')])))
code += '\n'.join(f'#include {include}' for include in sys_includes) + '\n\n'
code += '\n'.join(f'#include {include}' for include in package_includes) + '\n\n'
# Function signature
raw = '__raw_'
get_def = lambda n, t: f'{genc_map[t][0]} ' + (raw if genc_map[t][0] != genc_map[t][1] else '') + n
code += f'extern "C" void launch('
code += ', '.join([get_def(*arg_def) for arg_def in arg_defs] + ['int& __return_code', ])
code += ') {\n'
# Cast raw types
code += ' // Cast raw types (if needed)\n'
for arg_name, arg_type in arg_defs:
if genc_map[arg_type][0] != genc_map[arg_type][1]:
code += f' auto {arg_name} = reinterpret_cast<{genc_map[arg_type][1]}>({raw}{arg_name});\n'
# Function body
code += '\n'.join([((' ' if line else '') + line) for line in body.split('\n')])
# End the function
code += '}\n\n'
__global__ void dummy_kernel() {{
void *ptr = (void *)&fp8_gemm_kernel<
{kwargs['N']},
{kwargs['K']},
{kwargs['BLOCK_M']},
{kwargs['BLOCK_N']},
{kwargs['BLOCK_K']},
{kwargs['BLOCK_N_PADDING']},
{kwargs['SWIZZLE_D_MODE']},
{kwargs['NUM_GROUPS']},
{kwargs['NUM_STAGES']},
{kwargs['NUM_TMA_THREADS']},
{kwargs['NUM_MATH_THREADS_PER_GROUP']},
{kwargs['NUM_TMA_MULTICAST']},
{'true' if kwargs['IS_TMA_MULTICAST_ON_A'] else 'false'},
GemmType::{kwargs['GEMM_TYPE']}
>;
}}
'''
# Debug print
if os.getenv('DG_JIT_DEBUG', None):

164
deep_gemm/jit/utils.py Normal file
View File

@ -0,0 +1,164 @@
import ctypes
from enum import Enum
from typing import Any, Dict, Tuple
import cuda.bindings.driver as cuda
import torch
class Layout(Enum):
RowMajor = 0
ColMajor = 1
class GemmType(Enum):
Normal = 0
GroupedContiguous = 1
GroupedMasked = 2
def __str__(self) -> str:
return {
0: 'Normal',
1: 'GroupedContiguous',
2: 'GroupedMasked',
}[self.value]
typename_map: Dict[Any, str] = {
torch.int8: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
torch.int16: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT16,
torch.int32: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_INT32,
torch.int64: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_INT64,
torch.uint8: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
torch.uint16: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT16,
torch.uint32: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT32,
torch.uint64: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT64,
torch.float32: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_FLOAT32,
torch.float16: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_FLOAT16,
torch.bfloat16: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_BFLOAT16,
torch.float8_e4m3fn: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
torch.float8_e4m3fnuz: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
torch.float8_e5m2: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
torch.float8_e5m2fnuz: cuda.CUtensorMapDataType.CU_TENSOR_MAP_DATA_TYPE_UINT8,
}
swizzle_map = {
128: cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_128B,
64: cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_64B,
32: cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_32B,
0: cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_NONE,
}
def get_num_math_warpgroups(block_m: int) -> int:
return 1 if block_m == 64 else 2
def get_num_threads_per_sm(num_tma_threads: int, num_math_threads_per_group: int, block_m: int) -> int:
assert num_math_threads_per_group == 128, 'Only support 128 threads per math group'
return get_num_math_warpgroups(block_m) * num_math_threads_per_group + num_tma_threads
def make_2d_tma_copy_desc(global_address: torch.Tensor, gmem_dim: Tuple[cuda.cuuint64_t, cuda.cuuint64_t], stride_in_bytes: cuda.cuuint64_t, smem_dim: Tuple[cuda.cuuint32_t, cuda.cuuint32_t], swizzle_type: cuda.CUtensorMapSwizzle) -> cuda.CUtensorMap:
tensor_dtype = typename_map[global_address.dtype]
res, tensor_map = cuda.cuTensorMapEncodeTiled(
tensor_dtype,
2, # tensor rank
global_address.data_ptr(),
gmem_dim,
(stride_in_bytes,), # global strides
smem_dim,
(cuda.cuuint32_t(1), cuda.cuuint32_t(1)), # element strides
cuda.CUtensorMapInterleave.CU_TENSOR_MAP_INTERLEAVE_NONE,
swizzle_type,
cuda.CUtensorMapL2promotion.CU_TENSOR_MAP_L2_PROMOTION_L2_256B,
cuda.CUtensorMapFloatOOBfill.CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE,
)
if res != cuda.CUresult.CUDA_SUCCESS:
raise Exception(f'Failed to encode tensor map: {res}')
return tensor_map
def make_2d_tma_desc(global_address: torch.Tensor, layout: Layout, gmem_rows: int, gmem_cols: int, smem_rows: int, smem_cols: int, swizzle_type: cuda.CUtensorMapSwizzle = cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_128B) -> cuda.CUtensorMap:
if layout == Layout.RowMajor:
gmem_dim = (cuda.cuuint64_t(gmem_cols), cuda.cuuint64_t(gmem_rows))
smem_dim = (cuda.cuuint32_t(smem_cols), cuda.cuuint32_t(smem_rows))
return make_2d_tma_copy_desc(global_address, gmem_dim, cuda.cuuint64_t(gmem_cols * global_address.element_size()), smem_dim, swizzle_type)
else:
gmem_dim = (cuda.cuuint64_t(gmem_rows), cuda.cuuint64_t(gmem_cols))
smem_dim = (cuda.cuuint32_t(smem_rows), cuda.cuuint32_t(smem_cols))
return make_2d_tma_copy_desc(global_address, gmem_dim, cuda.cuuint64_t(gmem_rows * global_address.element_size()), smem_dim, swizzle_type)
def make_2d_tma_a_desc(gemm_type: GemmType, global_address: torch.Tensor, shape_m: int, shape_k: int, block_m: int, block_k: int, num_groups: int = 1) -> cuda.CUtensorMap:
return make_2d_tma_desc(global_address, Layout.RowMajor, shape_m * (num_groups if gemm_type == GemmType.GroupedMasked else 1), shape_k, block_m, block_k)
def make_2d_tma_b_desc(gemm_type: GemmType, global_address: torch.Tensor, shape_k: int, shape_n: int, block_k: int, block_n: int, num_groups: int = 1) -> cuda.CUtensorMap:
return make_2d_tma_desc(global_address, Layout.ColMajor, shape_k, shape_n * (num_groups if gemm_type != GemmType.Normal else 1), block_k, block_n)
def make_2d_tma_d_desc(gemm_type: GemmType, swizzle_mode: int, global_address: torch.Tensor, shape_m: int, shape_n: int, block_m: int, block_n: int, num_groups: int = 1) -> cuda.CUtensorMap:
# Swizzling requires the inner box dim less or equal than `kSwizzleDMode`
# bytes So `BLOCK_N * sizeof(T) / kSwizzleDMode` TMA stores are required
return make_2d_tma_desc(global_address, Layout.RowMajor, shape_m * (num_groups if gemm_type == GemmType.GroupedMasked else 1), shape_n, block_m, block_n if swizzle_mode == 0 else swizzle_mode // global_address.element_size(), swizzle_map[swizzle_mode])
def make_2d_tma_scales_a_desc(gemm_type: GemmType, global_address: torch.Tensor, shape_m: int, shape_k: int, block_m: int, block_k: int, num_groups: int = 1) -> cuda.CUtensorMap:
# Make TMA aligned to 16 bytes
kAlignment = 16 / global_address.element_size()
shape_m = (shape_m + kAlignment - 1) // kAlignment * kAlignment
return make_2d_tma_desc(global_address, Layout.ColMajor, shape_m, (shape_k + block_k - 1) // block_k * (num_groups if gemm_type == GemmType.GroupedMasked else 1), block_m, 1, cuda.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_NONE)
def run_gemm(kernel: cuda.CUkernel, num_tma_multicast: int, shape_m: int, block_m: int, gmem_d: torch.Tensor, scales_b: torch.Tensor, grouped_layout: torch.Tensor, num_sms: int, smem_size: int, tensor_map_a: cuda.CUtensorMap, tensor_map_b: cuda.CUtensorMap, tensor_map_scales_a: cuda.CUtensorMap, tensor_map_d: cuda.CUtensorMap, stream: cuda.CUstream) -> cuda.CUresult:
num_tma_threads = 128
num_math_threads_per_group = 128
res = cuda.cuKernelSetAttribute(cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem_size, kernel, cuda.CUdevice(gmem_d.device.index))[0]
if res != cuda.CUresult.CUDA_SUCCESS:
raise Exception(f'Failed to set max dynamic shared memory size: {res}')
attr_val = cuda.CUlaunchAttributeValue()
attr_val.clusterDim.x = num_tma_multicast
attr_val.clusterDim.y = 1
attr_val.clusterDim.z = 1
attr = cuda.CUlaunchAttribute()
attr.id = cuda.CUlaunchAttributeID.CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION
attr.value = attr_val
config = cuda.CUlaunchConfig()
config.numAttrs = 1
config.attrs = [attr]
config.gridDimX = num_sms
config.gridDimY = 1
config.gridDimZ = 1
config.blockDimX = get_num_threads_per_sm(num_tma_threads, num_math_threads_per_group, block_m)
config.blockDimY = 1
config.blockDimZ = 1
config.sharedMemBytes = smem_size
config.hStream = stream
kernelValues = (
gmem_d.data_ptr(),
scales_b.data_ptr(),
grouped_layout.data_ptr(),
shape_m,
tensor_map_a,
tensor_map_b,
tensor_map_scales_a,
tensor_map_d,
)
kernelTypes = (
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_uint32,
None,
None,
None,
None,
)
return cuda.cuLaunchKernelEx(config, kernel, (kernelValues, kernelTypes), 0)

View File

@ -3,40 +3,11 @@ import torch
from functools import lru_cache
from typing import Tuple
from ..jit.utils import GemmType, make_2d_tma_a_desc, make_2d_tma_b_desc, make_2d_tma_d_desc, make_2d_tma_scales_a_desc
from .tuner import jit_tuner
from .utils import get_num_sms, ceil_div, get_col_major_tma_aligned_tensor, get_m_alignment_for_contiguous_layout
# C++ code templates
includes = ('"deep_gemm/fp8_gemm.cuh"', )
template = """
using namespace deep_gemm;
// Templated args from Python JIT call
constexpr auto N = {N}, K = {K};
constexpr auto BLOCK_M = {BLOCK_M};
constexpr auto BLOCK_N = {BLOCK_N};
constexpr auto BLOCK_K = 128;
constexpr auto BLOCK_N_PADDING = {BLOCK_N_PADDING};
constexpr auto kSwizzleDMode = {SWIZZLE_D_MODE};
constexpr auto kNumGroups = 1;
constexpr auto kNumStages = {NUM_STAGES};
constexpr auto kNumTMAMulticast = {NUM_TMA_MULTICAST};
constexpr auto kIsTMAMulticastOnA = {IS_TMA_MULTICAST_ON_A};
// Make a templated GEMM
using gemm_t = Gemm<N, K, BLOCK_M, BLOCK_N, BLOCK_K, BLOCK_N_PADDING, kSwizzleDMode, kNumGroups, kNumStages, kNumTMAMulticast, kIsTMAMulticastOnA, GemmType::Normal>;
// Launch kernel
auto tma_a_desc = gemm_t::make_2d_tma_a_desc(lhs, m);
auto tma_b_desc = gemm_t::make_2d_tma_b_desc(rhs);
auto tma_scales_a_desc = gemm_t::make_2d_tma_scales_a_desc(lhs_scales, m);
auto tma_d_desc = gemm_t::make_2d_tma_d_desc(out, m);
gemm_t::run(out, rhs_scales, nullptr,
m,
tma_a_desc, tma_b_desc, tma_scales_a_desc, tma_d_desc,
stream, num_sms, smem_size);
"""
def is_tma_multicast_legal(shape_dim: int, block_dim: int, num_tma_multicast: int, num_sms: int,
require_divisible: bool = False) -> bool:
@ -64,7 +35,8 @@ def get_block_n_padding_for_smem_d(block_n: int) -> int:
def get_smem_config(num_stages: int, k: int, block_m: int, block_n: int, block_k: int = 128) -> Tuple[int, int, int]:
# Try swizzle first, as it does not waste shared memory
swizzle_mode = get_swizzle_mode(block_n)
block_n_padding = get_block_n_padding_for_smem_d(block_n) if swizzle_mode == 0 else 0
block_n_padding = get_block_n_padding_for_smem_d(
block_n) if swizzle_mode == 0 else 0
smem_d = block_m * (block_n + block_n_padding) * 2
smem_a_per_stage = block_m * block_k
@ -78,7 +50,8 @@ def get_smem_config(num_stages: int, k: int, block_m: int, block_n: int, block_k
smem_size += num_stages * smem_a_per_stage
smem_size += num_stages * smem_scales_a_per_stage
smem_size += num_stages * smem_b_per_stage
smem_size += ceil_div(smem_scales_b * (1 if block_k % block_n == 0 else 2), 8) * 8
smem_size += ceil_div(smem_scales_b * (1 if block_k %
block_n == 0 else 2), 8) * 8
smem_size += smem_barrier
# Swizzle and padding are not compatible
@ -97,9 +70,13 @@ def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int,
block_ms = (get_m_alignment_for_contiguous_layout(), )
block_ns = tuple(range(16, 129, 8)) + (144, 160, )
fix_wave_saturate = lambda x: num_sms if x == 0 else x
get_num_waves = lambda bm, bn: (ceil_div(ceil_div(m, bm) * ceil_div(n, bn) * num_groups, num_sms) if bm else None)
get_last_wave_util = lambda bm, bn: fix_wave_saturate((ceil_div(m, bm) * ceil_div(n, bn) * num_groups) % num_sms)
def fix_wave_saturate(x): return num_sms if x == 0 else x
def get_num_waves(bm, bn): return (ceil_div(
ceil_div(m, bm) * ceil_div(n, bn) * num_groups, num_sms) if bm else None)
def get_last_wave_util(bm, bn): return fix_wave_saturate(
(ceil_div(m, bm) * ceil_div(n, bn) * num_groups) % num_sms)
# Decide block sizes by waves
best_block_m, best_block_n = None, None
@ -107,7 +84,8 @@ def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int,
# NOTES: the block sizes can not be too large, so at least one dim less than 128
for block_n in filter(lambda bn: block_m <= 128 or bn <= 128, block_ns):
success = False
num_waves, best_num_waves = get_num_waves(block_m, block_n), get_num_waves(best_block_m, best_block_n)
num_waves, best_num_waves = get_num_waves(
block_m, block_n), get_num_waves(best_block_m, best_block_n)
if best_block_m is None or best_block_n is None:
success = True
elif num_waves < best_num_waves:
@ -124,7 +102,8 @@ def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int,
success |= block_n == best_block_n and block_m < best_block_m
# Case 3: different for both `block_m` and `block_n`, `block_n` larger is better
success |= block_m != best_block_m and block_n > best_block_n
best_block_m, best_block_n = (block_m, block_n) if success else (best_block_m, best_block_n)
best_block_m, best_block_n = (block_m, block_n) if success else (
best_block_m, best_block_n)
assert best_block_m is not None and best_block_n is not None
# Always pick the longest one
@ -135,7 +114,8 @@ def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int,
# Unrolling both stages and `num_former_iters` will cause large code size
stage_candidates = (4, 3)
for num_stages in stage_candidates:
best_smem_config = get_smem_config(num_stages, k, best_block_m, best_block_n)
best_smem_config = get_smem_config(
num_stages, k, best_block_m, best_block_n)
if best_smem_config[0] <= sm90_capacity:
best_num_stages = num_stages
break
@ -159,8 +139,10 @@ def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int,
# Recompute the minimal number of SMs required
# NOTES: less L2 cache usage and less GPU frequency drop
num_waves = get_num_waves(best_block_m, best_block_n)
num_min_sms = ceil_div(ceil_div(m, best_block_m) * ceil_div(n, best_block_n) * num_groups, num_waves)
num_min_sms = ceil_div(num_min_sms, best_tma_multicast_config[0]) * best_tma_multicast_config[0]
num_min_sms = ceil_div(ceil_div(m, best_block_m) *
ceil_div(n, best_block_n) * num_groups, num_waves)
num_min_sms = ceil_div(
num_min_sms, best_tma_multicast_config[0]) * best_tma_multicast_config[0]
assert num_min_sms <= num_sms
return num_min_sms, best_block_m, best_block_n, best_num_stages, best_tma_multicast_config, best_smem_config
@ -211,11 +193,42 @@ def gemm_fp8_fp8_bf16_nt(lhs: Tuple[torch.Tensor, torch.Tensor],
return
# Auto-tuning with compilation
global includes, template
num_sms = get_num_sms()
num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(m, n, k, 1, num_sms)
args = (lhs, lhs_scales, rhs, rhs_scales, out, m, torch.cuda.current_stream(), num_sms, smem_config[0])
runtime = jit_tuner.compile_and_tune(
num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(
m, n, k, 1, num_sms)
block_k = 128
num_tma_threads = 128
num_math_threads_per_group = 128
tensor_map_a = make_2d_tma_a_desc(
GemmType.Normal, lhs, m, k, block_m, block_k)
tensor_map_b = make_2d_tma_b_desc(
GemmType.Normal, rhs, k, n, block_k, block_n)
tensor_map_d = make_2d_tma_d_desc(
GemmType.Normal, smem_config[1], out, m, n, block_m, block_n)
tensor_map_scales_a = make_2d_tma_scales_a_desc(
GemmType.Normal, lhs_scales, m, k, block_m, block_k)
kwargs = {
'GEMM_TYPE': GemmType.Normal,
'NUM_TMA_THREADS': num_tma_threads,
'NUM_MATH_THREADS_PER_GROUP': num_math_threads_per_group,
'M': m,
'NUM_GROUPS': 1,
'BLOCK_K': block_k,
'GMEM_D': out,
'SCALES_B': rhs_scales,
'GROUPED_LAYOUT': torch.empty(0, dtype=torch.int32, device=out.device),
'NUM_SMS': num_sms,
'SMEM_SIZE': smem_config[0],
'TENSOR_MAP_A': tensor_map_a,
'TENSOR_MAP_B': tensor_map_b,
'TENSOR_MAP_SCALES_A': tensor_map_scales_a,
'TENSOR_MAP_D': tensor_map_d,
'STREAM': torch.cuda.current_stream().cuda_stream,
}
runtime, best_keys = jit_tuner.compile_and_tune(
name='gemm_fp8_fp8_bf16_nt',
keys={'N': n, 'K': k, 'BLOCK_M': block_m, 'BLOCK_N': block_n,
'SWIZZLE_D_MODE': smem_config[1],
@ -224,14 +237,8 @@ def gemm_fp8_fp8_bf16_nt(lhs: Tuple[torch.Tensor, torch.Tensor],
'NUM_TMA_MULTICAST': tma_multicast_config[0],
'IS_TMA_MULTICAST_ON_A': tma_multicast_config[1]},
space=(),
includes=includes,
arg_defs=(('lhs', torch.float8_e4m3fn), ('lhs_scales', torch.float),
('rhs', torch.float8_e4m3fn), ('rhs_scales', torch.float),
('out', torch.bfloat16), ('m', int),
('stream', torch.cuda.Stream), ('num_sms', int), ('smem_size', int)),
template=template,
args=args
kwargs=kwargs
)
# Run the kernel
runtime(*args)
runtime(**best_keys, **kwargs)

View File

@ -1,41 +1,12 @@
import torch
from typing import Tuple
from ..jit.utils import GemmType, make_2d_tma_a_desc, make_2d_tma_b_desc, make_2d_tma_d_desc, make_2d_tma_scales_a_desc
from .gemm import get_best_configs, get_block_n_padding_for_smem_d
from .tuner import jit_tuner
from .utils import get_col_major_tma_aligned_tensor, get_num_sms
# C++ code templates
includes = ('"deep_gemm/fp8_gemm.cuh"', )
template = """
using namespace deep_gemm;
// Templated args from Python JIT call
constexpr auto N = {N}, K = {K};
constexpr auto BLOCK_M = {BLOCK_M};
constexpr auto BLOCK_N = {BLOCK_N};
constexpr auto BLOCK_K = 128;
constexpr auto BLOCK_N_PADDING = {BLOCK_N_PADDING};
constexpr auto kSwizzleDMode = {SWIZZLE_D_MODE};
constexpr auto kNumGroups = {NUM_GROUPS};
constexpr auto kNumStages = {NUM_STAGES};
constexpr auto kNumTMAMulticast = {NUM_TMA_MULTICAST};
constexpr auto kIsTMAMulticastOnA = {IS_TMA_MULTICAST_ON_A};
// Make a templated grouped GEMM
using gemm_t = Gemm<N, K, BLOCK_M, BLOCK_N, BLOCK_K, BLOCK_N_PADDING, kSwizzleDMode, kNumGroups, kNumStages, kNumTMAMulticast, kIsTMAMulticastOnA, GemmType::{GEMM_TYPE}>;
// Launch kernel
auto tma_a_desc = gemm_t::make_2d_tma_a_desc(lhs, m);
auto tma_b_desc = gemm_t::make_2d_tma_b_desc(rhs);
auto tma_scales_a_desc = gemm_t::make_2d_tma_scales_a_desc(lhs_scales, m);
auto tma_d_desc = gemm_t::make_2d_tma_d_desc(out, m);
gemm_t::run(out, rhs_scales, grouped_layout,
m,
tma_a_desc, tma_b_desc, tma_scales_a_desc, tma_d_desc,
stream, num_sms, smem_size);
"""
def m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(lhs: Tuple[torch.Tensor, torch.Tensor],
rhs: Tuple[torch.Tensor, torch.Tensor],
@ -87,13 +58,40 @@ def m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(lhs: Tuple[torch.Tensor, torch.Ten
return
# Auto-tuning with compilation
global includes, template
num_sms = get_num_sms()
num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(m, n, k, 1, num_sms, is_grouped_contiguous=True)
args = (lhs, lhs_scales, rhs, rhs_scales, out,
m_indices, m, num_groups,
torch.cuda.current_stream(), num_sms, smem_config[0])
runtime = jit_tuner.compile_and_tune(
num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(
m, n, k, 1, num_sms, is_grouped_contiguous=True)
block_k = 128
num_tma_threads = 128
num_math_threads_per_group = 128
tensor_map_a = make_2d_tma_a_desc(
GemmType.GroupedContiguous, lhs, m, k, block_m, block_k, num_groups)
tensor_map_b = make_2d_tma_b_desc(
GemmType.GroupedContiguous, rhs, k, n, block_k, block_n, num_groups)
tensor_map_d = make_2d_tma_d_desc(
GemmType.GroupedContiguous, smem_config[1], out, m, n, block_m, block_n, num_groups)
tensor_map_scales_a = make_2d_tma_scales_a_desc(
GemmType.GroupedContiguous, lhs_scales, m, k, block_m, block_k, num_groups)
kwargs = {
'NUM_TMA_THREADS': num_tma_threads,
'NUM_MATH_THREADS_PER_GROUP': num_math_threads_per_group,
'M': m,
'BLOCK_K': block_k,
'GMEM_D': out,
'SCALES_B': rhs_scales,
'GROUPED_LAYOUT': m_indices,
'NUM_SMS': num_sms,
'SMEM_SIZE': smem_config[0],
'TENSOR_MAP_A': tensor_map_a,
'TENSOR_MAP_B': tensor_map_b,
'TENSOR_MAP_SCALES_A': tensor_map_scales_a,
'TENSOR_MAP_D': tensor_map_d,
'STREAM': torch.cuda.current_stream().cuda_stream,
}
runtime, best_keys = jit_tuner.compile_and_tune(
name='m_grouped_gemm_fp8_fp8_bf16_nt',
keys={'N': n, 'K': k, 'BLOCK_M': block_m, 'BLOCK_N': block_n,
'SWIZZLE_D_MODE': smem_config[1],
@ -102,20 +100,13 @@ def m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(lhs: Tuple[torch.Tensor, torch.Ten
'NUM_STAGES': num_stages,
'NUM_TMA_MULTICAST': tma_multicast_config[0],
'IS_TMA_MULTICAST_ON_A': tma_multicast_config[1],
'GEMM_TYPE': 'GroupedContiguous'},
'GEMM_TYPE': GemmType.GroupedContiguous},
space=(),
includes=includes,
arg_defs=(('lhs', torch.float8_e4m3fn), ('lhs_scales', torch.float),
('rhs', torch.float8_e4m3fn), ('rhs_scales', torch.float),
('out', torch.bfloat16),
('grouped_layout', torch.int32), ('m', int), ('num_groups', int),
('stream', torch.cuda.Stream), ('num_sms', int), ('smem_size', int)),
template=template,
args=args
kwargs=kwargs,
)
# Run the kernel
runtime(*args)
runtime(**best_keys, **kwargs)
def m_grouped_gemm_fp8_fp8_bf16_nt_masked(lhs: Tuple[torch.Tensor, torch.Tensor],
@ -168,16 +159,44 @@ def m_grouped_gemm_fp8_fp8_bf16_nt_masked(lhs: Tuple[torch.Tensor, torch.Tensor]
# Auto-tuning with compilation
global includes, template
num_sms = get_num_sms()
num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(expected_m, n, k, num_groups, num_sms, is_grouped_masked=True)
num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(
expected_m, n, k, num_groups, num_sms, is_grouped_masked=True)
# Extra checks for TMA store
if num_groups > 1 and m > block_m:
assert m % block_m == 0, f'For masked grouped GEMM, shape M should be multiple of the block M (current block M: {block_m})'
args = (lhs, lhs_scales, rhs, rhs_scales, out,
masked_m, m,
torch.cuda.current_stream(), num_sms, smem_config[0])
runtime = jit_tuner.compile_and_tune(
block_k = 128
num_tma_threads = 128
num_math_threads_per_group = 128
tensor_map_a = make_2d_tma_a_desc(
GemmType.GroupedMasked, lhs, m, k, block_m, block_k, num_groups)
tensor_map_b = make_2d_tma_b_desc(
GemmType.GroupedMasked, rhs, k, n, block_k, block_n, num_groups)
tensor_map_d = make_2d_tma_d_desc(
GemmType.GroupedMasked, smem_config[1], out, m, n, block_m, block_n, num_groups)
tensor_map_scales_a = make_2d_tma_scales_a_desc(
GemmType.GroupedMasked, lhs_scales, m, k, block_m, block_k, num_groups)
kwargs = {
'NUM_TMA_THREADS': num_tma_threads,
'NUM_MATH_THREADS_PER_GROUP': num_math_threads_per_group,
'M': m,
'BLOCK_K': block_k,
'GMEM_D': out,
'SCALES_B': rhs_scales,
'GROUPED_LAYOUT': masked_m,
'NUM_SMS': num_sms,
'SMEM_SIZE': smem_config[0],
'TENSOR_MAP_A': tensor_map_a,
'TENSOR_MAP_B': tensor_map_b,
'TENSOR_MAP_SCALES_A': tensor_map_scales_a,
'TENSOR_MAP_D': tensor_map_d,
'STREAM': torch.cuda.current_stream().cuda_stream,
}
runtime, best_keys = jit_tuner.compile_and_tune(
name='m_grouped_gemm_fp8_fp8_bf16_nt',
keys={'N': n, 'K': k, 'BLOCK_M': block_m, 'BLOCK_N': block_n,
'SWIZZLE_D_MODE': smem_config[1],
@ -186,17 +205,10 @@ def m_grouped_gemm_fp8_fp8_bf16_nt_masked(lhs: Tuple[torch.Tensor, torch.Tensor]
'NUM_STAGES': num_stages,
'NUM_TMA_MULTICAST': tma_multicast_config[0],
'IS_TMA_MULTICAST_ON_A': tma_multicast_config[1],
'GEMM_TYPE': 'GroupedMasked'},
'GEMM_TYPE': GemmType.GroupedMasked},
space=(),
includes=includes,
arg_defs=(('lhs', torch.float8_e4m3fn), ('lhs_scales', torch.float),
('rhs', torch.float8_e4m3fn), ('rhs_scales', torch.float),
('out', torch.bfloat16),
('grouped_layout', torch.int32), ('m', int),
('stream', torch.cuda.Stream), ('num_sms', int), ('smem_size', int)),
template=template,
args=args
kwargs=kwargs,
)
# Run the kernel
runtime(*args)
runtime(**best_keys, **kwargs)

View File

@ -3,15 +3,16 @@ import os
import torch
from typing import Any, Dict
from ..jit import build, cpp_format, generate, Runtime
import cuda.bindings.driver as cuda
from ..jit import build, generate, Runtime
class JITTuner:
def __init__(self) -> None:
self.tuned = {}
def compile_and_tune(self, name: str, keys: Dict[str, Any], space: tuple,
includes: tuple, arg_defs: tuple, template: str, args: tuple) -> Runtime:
def compile_and_tune(self, name: str, keys: Dict[str, Any], space: tuple, kwargs: Dict[str, Any]) -> Runtime:
# NOTES: we always assume the space and template will not change
# We also assume the GPU device will not be changed
# NOTES: the function must have no accumulated side effects
@ -26,7 +27,7 @@ class JITTuner:
print(f'Auto-tuning JIT kernel {name} with keys {keys}')
assert signature not in self.tuned
assert args is not None
assert kwargs is not None
space = (dict(), ) if len(space) == 0 else space
kernels = []
@ -34,30 +35,31 @@ class JITTuner:
assert isinstance(tuned_keys, dict)
full_keys = copy.deepcopy(keys)
full_keys.update(tuned_keys)
code = generate(includes, arg_defs, cpp_format(template, full_keys))
# Illegal build must raise errors
kernels.append((build(name, arg_defs, code), tuned_keys))
code = generate(**kwargs, **full_keys)
kernels.append((build(name, code), full_keys))
best_runtime, best_time, best_keys = None, None, None
for runtime, tuned_keys in kernels:
if len(space) > 1:
# Check kernel validity
return_code = runtime(*args)
if return_code != 0:
return_code = runtime(**tuned_keys, **kwargs)
if return_code != cuda.CUresult.CUDA_SUCCESS:
# Pass illegal kernels, e.g. insufficient shared memory capacity
if os.getenv('DG_JIT_DEBUG', None):
print(f'Illegal JIT kernel {name} with keys {keys} and tuned keys {tuned_keys}: error code {return_code}')
print(
f'Illegal JIT kernel {name} with keys {keys} and tuned keys {tuned_keys}: error code {return_code}')
continue
# Measure performance with L2 flush and a large GEMM kernel before to reduce overhead between kernels
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
torch.empty(int(256e6 // 4), dtype=torch.int, device='cuda').zero_()
torch.randn((8192, 8192), dtype=torch.float, device='cuda') @ torch.randn((8192, 8192), dtype=torch.float, device='cuda')
torch.empty(int(256e6 // 4), dtype=torch.int,
device='cuda').zero_()
torch.randn((8192, 8192), dtype=torch.float, device='cuda') @ torch.randn(
(8192, 8192), dtype=torch.float, device='cuda')
start_event.record()
for i in range(20):
assert runtime(*args) == 0
assert runtime(**tuned_keys, **kwargs) == cuda.CUresult.CUDA_SUCCESS
end_event.record()
end_event.synchronize()
elapsed_time = start_event.elapsed_time(end_event)
@ -68,14 +70,16 @@ class JITTuner:
if best_time is None or elapsed_time < best_time:
best_runtime, best_time, best_keys = runtime, elapsed_time, tuned_keys
if os.getenv('DG_JIT_DEBUG', None):
print(f'Tuned JIT kernel {name} with keys {keys} and tuned keys {tuned_keys} has time {elapsed_time}')
print(
f'Tuned JIT kernel {name} with keys {keys} and tuned keys {tuned_keys} has time {elapsed_time}')
assert best_runtime is not None, f'Failed to tune JIT kernel {name} with keys {keys}'
# Cache the best runtime and return
if os.getenv('DG_JIT_DEBUG', None) or os.getenv('DG_PRINT_AUTOTUNE', None):
print(f'Best JIT kernel {name} with keys {keys} has tuned keys {best_keys} and time {best_time}')
self.tuned[signature] = best_runtime
return best_runtime
print(
f'Best JIT kernel {name} with keys {keys} has tuned keys {best_keys} and time {best_time}')
self.tuned[signature] = (best_runtime, best_keys)
return best_runtime, best_keys
jit_tuner = JITTuner()

View File

@ -1,64 +1,116 @@
import ctypes
import os
import torch
from typing import Any
from typing import Any, Dict
import cuda.bindings.driver as cuda
from deep_gemm import jit
class Capture:
def __init__(self) -> None:
self.read_fd = None
self.write_fd = None
self.saved_stdout = None
self.captured = None
def run_vector_add(kernel: cuda.CUkernel, a: torch.Tensor, b: torch.Tensor, c: torch.Tensor, stream: cuda.CUstream) -> cuda.CUresult:
assert a.shape == b.shape == c.shape
assert a.device == b.device == c.device
assert a.dim() == 1
def __enter__(self) -> Any:
self.read_fd, self.write_fd = os.pipe()
self.saved_stdout = os.dup(1)
os.dup2(self.write_fd, 1)
return self
n = a.numel()
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
os.dup2(self.saved_stdout, 1)
os.close(self.write_fd)
with os.fdopen(self.read_fd, 'r') as f:
self.captured = f.read()
config = cuda.CUlaunchConfig()
config.gridDimX = (n + 127) // 128
config.gridDimY = 1
config.gridDimZ = 1
config.blockDimX = 128
config.blockDimY = 1
config.blockDimZ = 1
config.hStream = stream
def capture(self) -> str:
return self.captured
kernelValues = (
a.data_ptr(),
b.data_ptr(),
c.data_ptr(),
n,
)
kernelTypes = (
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_uint32,
)
return cuda.cuLaunchKernelEx(config, kernel, (kernelValues, kernelTypes), 0)[0]
def generate_vector_add(**kwargs: Dict[str, Any]) -> str:
return f"""
#ifdef __CUDACC_RTC__
#ifndef NVRTC_JIT_COMPILATION
#define NVRTC_JIT_COMPILATION
#endif
#include <deep_gemm/nvrtc_std.cuh>
#else
#include <cuda.h>
#endif
#include <cuda_fp8.h>
#include <cuda_bf16.h>
template<typename T>
__global__ void vector_add(T* a, T* b, T* c, uint32_t N) {{
uint32_t i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N) {{
c[i] = a[i] + b[i];
}}
}}
__global__ void dummy_kernel() {{
void *ptr = (void *)&vector_add<{kwargs['T']}>;
}}
"""
class VectorAddRuntime(jit.Runtime):
def __init__(self, path: str) -> None:
super().__init__(path, 'vector_add', run_vector_add, [
'A',
'B',
'C',
'STREAM',
])
if __name__ == '__main__':
# Runtime
print(f'NVCC compiler: {jit.get_nvcc_compiler()}\n')
# Templates
# NVCC
print(f'NVCC compiler version: {jit.NvccCompiler.__version__()}\n')
print('Generated code:')
args = (('lhs', torch.float8_e4m3fn), ('rhs', torch.float8_e4m3fn), ('scale', torch.float), ('out', torch.bfloat16),
('enable_double_streams', bool), ('stream', torch.cuda.Stream))
body = "\n"
body += 'std::cout << reinterpret_cast<uint64_t>(lhs) << std::endl;\n'
body += 'std::cout << reinterpret_cast<uint64_t>(rhs) << std::endl;\n'
body += 'std::cout << reinterpret_cast<uint64_t>(scale) << std::endl;\n'
body += 'std::cout << reinterpret_cast<uint64_t>(out) << std::endl;\n'
body += 'std::cout << enable_double_streams << std::endl;\n'
body += 'std::cout << reinterpret_cast<uint64_t>(stream) << std::endl;\n'
code = jit.generate((), args, body)
code = generate_vector_add(T='float')
print(code)
# Build
print('Building ...')
func = jit.build('test_func', args, code)
func = jit.NvccCompiler.build('test_func', code, VectorAddRuntime)
# Test correctness
print('Running ...')
fp8_tensor = torch.empty((1, ), dtype=torch.float8_e4m3fn, device='cuda')
fp32_tensor = torch.empty((1, ), dtype=torch.float, device='cuda')
bf16_tensor = torch.empty((1, ), dtype=torch.bfloat16, device='cuda')
with Capture() as capture:
assert func(fp8_tensor, fp8_tensor, fp32_tensor, bf16_tensor, True, torch.cuda.current_stream()) == 0
output = capture.capture()
ref_output = f'{fp8_tensor.data_ptr()}\n{fp8_tensor.data_ptr()}\n{fp32_tensor.data_ptr()}\n{bf16_tensor.data_ptr()}\n1\n{torch.cuda.current_stream().cuda_stream}\n'
assert output == ref_output, f'{output=}, {ref_output=}'
a = torch.randn((1024, ), dtype=torch.float32, device='cuda')
b = torch.randn((1024, ), dtype=torch.float32, device='cuda')
c = torch.empty_like(a)
ret = func(A=a, B=b, C=c, STREAM=torch.cuda.current_stream().cuda_stream)
assert ret == cuda.CUresult.CUDA_SUCCESS, ret
ref_output = a + b
torch.testing.assert_close(c, ref_output)
print('JIT test passed')
print('JIT test for NVCC passed\n')
# NVRTC
print(f'NVRTC compiler version: {jit.NvrtcCompiler.__version__()}\n')
print('Generated code:')
code = generate_vector_add(T='__nv_bfloat16')
print(code)
print('Building ...')
func = jit.NvrtcCompiler.build('test_func', code, VectorAddRuntime)
a = torch.randn((1024, ), dtype=torch.bfloat16, device='cuda')
b = torch.randn((1024, ), dtype=torch.bfloat16, device='cuda')
c = torch.empty_like(a)
ret = func(A=a, B=b, C=c, STREAM=torch.cuda.current_stream().cuda_stream)
assert ret == cuda.CUresult.CUDA_SUCCESS, ret
ref_output = a + b
torch.testing.assert_close(c, ref_output)
print('JIT test for NVRTC passed')