Merge pull request #49 from A-transformer/maximum_fp8_e4m3_value

Maximum representable value in FP8 E4M3 format
This commit is contained in:
Liang 2025-03-08 09:50:06 +08:00 committed by GitHub
commit 4d4f2342fe
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -5,14 +5,17 @@ from typing import Tuple
import deep_gemm
from deep_gemm import bench_kineto, calc_diff, ceil_div, get_col_major_tma_aligned_tensor
FP8_E4M3_MAX = 448.0 # Maximum representable value in FP8 E4M3 format
def per_token_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
assert x.dim() == 2 and x.size(1) % 128 == 0
m, n = x.shape
x_view = x.view(m, -1, 128)
x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(m, n), (x_amax / 448.0).view(m, -1)
return (
(x_view * (FP8_E4M3_MAX / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(m, n),
(x_amax / FP8_E4M3_MAX).view(m, -1)
)
def per_block_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
assert x.dim() == 2
@ -21,8 +24,8 @@ def per_block_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
x_padded[:m, :n] = x
x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2))
x_scaled = (x_view * (FP8_E4M3_MAX / x_amax)).to(torch.float8_e4m3fn)
return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / FP8_E4M3_MAX).view(x_view.size(0), x_view.size(2))
def construct(m: int, k: int, n: int) -> \