mirror of
https://github.com/deepseek-ai/DeepEP
synced 2025-04-30 18:51:34 +00:00
173 lines
9.7 KiB
Python
173 lines
9.7 KiB
Python
import random
|
|
import torch
|
|
import torch.distributed as dist
|
|
from functools import partial
|
|
|
|
import deep_ep
|
|
from utils import init_dist, bench, bench_kineto, calc_diff, hash_tensor, per_token_cast_back
|
|
|
|
|
|
def test_main(num_tokens: int, hidden: int, num_experts: int, num_topk: int,
|
|
rank: int, num_ranks: int, group: dist.ProcessGroup, buffer: deep_ep.Buffer, seed: int = 0):
|
|
torch.manual_seed(seed + rank)
|
|
random.seed(seed + rank)
|
|
|
|
assert num_experts % num_ranks == 0
|
|
num_local_experts = num_experts // num_ranks
|
|
|
|
# NOTES: the integers greater than 256 exceeds the BF16 precision limit
|
|
rank_offset = 128
|
|
assert num_ranks - rank_offset < 257, 'Too many ranks (exceeding test precision limit)'
|
|
|
|
x = torch.ones((num_tokens, hidden), dtype=torch.bfloat16, device='cuda') * (rank - rank_offset)
|
|
x[:, -128:] = torch.arange(num_tokens, device='cuda').to(torch.bfloat16).view(-1, 1)
|
|
scores = torch.randn((num_tokens, num_experts), dtype=torch.float32, device='cuda').abs() + 1
|
|
topk_idx = torch.topk(scores, num_topk, dim=-1, largest=True, sorted=True)[1]
|
|
topk_weights = torch.randn((num_tokens, num_topk), dtype=torch.float32, device='cuda').abs()
|
|
|
|
# Randomly mask some positions
|
|
for i in range(10):
|
|
topk_idx[random.randint(0, num_tokens - 1), random.randint(0, num_topk - 1)] = -1
|
|
|
|
# Check dispatch correctness
|
|
do_check = True
|
|
hash_value, num_times = 0, 0
|
|
for return_recv_hook in (False, True):
|
|
for dispatch_use_fp8 in (False, True):
|
|
num_times += 1
|
|
for i in range((num_times % 2) + 1):
|
|
packed_recv_x, packed_recv_count, handle, event, hook = \
|
|
buffer.low_latency_dispatch(x, topk_idx, num_tokens, num_experts, use_fp8=dispatch_use_fp8,
|
|
async_finish=not return_recv_hook, return_recv_hook=return_recv_hook)
|
|
hook() if return_recv_hook else event.current_stream_wait()
|
|
packed_recv_x = (packed_recv_x[0], packed_recv_x[1].contiguous()) if dispatch_use_fp8 else packed_recv_x
|
|
simulated_gemm_x = per_token_cast_back(packed_recv_x[0].view(-1, hidden), packed_recv_x[1].view(-1, hidden // 128)).view(packed_recv_x[0].shape) \
|
|
if dispatch_use_fp8 else packed_recv_x.clone()
|
|
all_topk_idx = torch.empty((num_ranks, num_tokens, num_topk), dtype=topk_idx.dtype, device='cuda')
|
|
dist.all_gather_into_tensor(all_topk_idx, topk_idx, group=group)
|
|
for i in range(num_local_experts if do_check else 0):
|
|
expert_id = rank * num_local_experts + i
|
|
recv_x = per_token_cast_back(packed_recv_x[0][i], packed_recv_x[1][i]) if dispatch_use_fp8 else packed_recv_x[i]
|
|
recv_count, recv_src_info, recv_layout_range = packed_recv_count[i], handle[0][i], handle[1][i]
|
|
|
|
# Check expert indices
|
|
int_mask = (2 ** 32) - 1
|
|
num_valid_tokens = recv_count.item()
|
|
assert num_valid_tokens == (recv_layout_range & int_mask).sum().item(), f'{num_valid_tokens} != {recv_layout_range & int_mask}.sum().item()'
|
|
assert num_valid_tokens == (all_topk_idx == expert_id).sum().item(), f'{num_valid_tokens} != {(all_topk_idx == expert_id).sum().item()}'
|
|
|
|
# Check received data
|
|
recv_x = recv_x[:num_valid_tokens]
|
|
recv_x_amin = recv_x[:, :-128].amin(dim=-1)
|
|
recv_src_info = recv_src_info[:num_valid_tokens]
|
|
assert torch.equal(recv_x_amin, recv_x[:, :-128].amax(dim=-1))
|
|
assert (recv_x[:, -128:] - recv_src_info.view(-1, 1) % num_tokens).sum().item() == 0
|
|
for j in range(num_ranks):
|
|
begin_idx, count = (recv_layout_range[j] >> 32).item(), (recv_layout_range[j] & int_mask).item()
|
|
assert (recv_x_amin == j - rank_offset).sum().item() == (all_topk_idx[j] == expert_id).sum().item()
|
|
assert (recv_x[begin_idx:begin_idx + count][:-128] - j).sum().item() == 0
|
|
if dispatch_use_fp8:
|
|
hash_value ^= hash_tensor(packed_recv_x[0][i, :num_valid_tokens])
|
|
hash_value ^= hash_tensor(packed_recv_x[1][i, :num_valid_tokens])
|
|
else:
|
|
hash_value ^= hash_tensor(packed_recv_x[i, :num_valid_tokens])
|
|
|
|
# Check combine correctness
|
|
for zero_copy in (False, True):
|
|
if zero_copy:
|
|
buffer.get_next_low_latency_combine_buffer(handle)[:, :, :] = simulated_gemm_x
|
|
out = torch.empty((num_tokens, hidden), dtype=torch.bfloat16, device='cuda')
|
|
combined_x, event, hook = buffer.low_latency_combine(simulated_gemm_x, topk_idx, topk_weights, handle,
|
|
async_finish=not return_recv_hook, zero_copy=zero_copy,
|
|
return_recv_hook=return_recv_hook, out=out)
|
|
hook() if return_recv_hook else event.current_stream_wait()
|
|
if do_check:
|
|
diff = calc_diff(x * topk_weights.masked_fill(topk_idx == -1, 0).sum(dim=1).view(-1, 1), combined_x)
|
|
assert torch.isnan(combined_x).sum().item() == 0
|
|
assert diff < 1e-5, f'Error: {diff=}, {zero_copy=}'
|
|
hash_value ^= hash_tensor(combined_x)
|
|
|
|
def create_test_cast_with_outliers(num_outliers):
|
|
tmp = torch.randn((num_tokens, hidden), dtype=torch.bfloat16, device='cuda')
|
|
tmp /= tmp.abs().amax(dim=1).view(-1, 1)
|
|
assert tmp.abs().amax().item() <= 1
|
|
|
|
# Create some amax outliers
|
|
for i in range(num_outliers):
|
|
tmp[random.randint(0, num_tokens - 1)] *= 1e3
|
|
return tmp
|
|
|
|
# noinspection PyShadowingNames
|
|
def large_gemm_with_hook(hook):
|
|
mat_0 = torch.randn((8192, 8192), dtype=torch.float)
|
|
mat_1 = torch.randn((8192, 8192), dtype=torch.float)
|
|
mat_0 @ mat_1
|
|
hook()
|
|
|
|
# noinspection PyShadowingNames
|
|
def test_func(zero_copy: bool, return_recv_hook: bool):
|
|
recv_x, recv_count, handle, event, hook = \
|
|
buffer.low_latency_dispatch(x, topk_idx, num_tokens, num_experts,
|
|
async_finish=False, return_recv_hook=return_recv_hook)
|
|
large_gemm_with_hook(hook) if return_recv_hook else None
|
|
if zero_copy:
|
|
buffer.get_next_low_latency_combine_buffer(handle)[:, :, :] = simulated_gemm_x
|
|
combined_x, event, hook = buffer.low_latency_combine(simulated_gemm_x, topk_idx, topk_weights, handle,
|
|
zero_copy=zero_copy, return_recv_hook=return_recv_hook)
|
|
large_gemm_with_hook(hook) if return_recv_hook else None
|
|
|
|
# Calculate bandwidth
|
|
num_fp8_bytes, num_bf16_bytes = (hidden + hidden / 128 * 4 + 16), hidden * 2
|
|
num_dispatch_comm_bytes, num_combine_comm_bytes = 0, 0
|
|
for i in range(num_tokens):
|
|
num_selections = (topk_idx[i] != -1).sum().item()
|
|
num_dispatch_comm_bytes += num_fp8_bytes * num_selections
|
|
num_combine_comm_bytes += num_bf16_bytes * num_selections
|
|
|
|
# Dispatch + combine testing
|
|
avg_t, min_t, max_t = bench(partial(test_func, zero_copy=False, return_recv_hook=False))
|
|
print(f'[rank {rank}] Dispatch + combine bandwidth: {(num_dispatch_comm_bytes + num_combine_comm_bytes) / 1e9 / avg_t:.2f} GB/s, '
|
|
f'avg_t={avg_t * 1e6:.2f} us, min_t={min_t * 1e6:.2f} us, max_t={max_t * 1e6:.2f} us', flush=True)
|
|
|
|
# Separate profiling
|
|
for return_recv_hook in (False, True):
|
|
group.barrier()
|
|
dispatch_t, combine_t = bench_kineto(partial(test_func, zero_copy=True, return_recv_hook=return_recv_hook),
|
|
kernel_names=('dispatch', 'combine'), barrier_comm_profiling=True,
|
|
suppress_kineto_output=True)
|
|
if not return_recv_hook:
|
|
print(f'[rank {rank}] Dispatch bandwidth: {num_dispatch_comm_bytes / 1e9 / dispatch_t:.2f} GB/s, avg_t={dispatch_t * 1e6:.2f} us | '
|
|
f'Combine bandwidth: {num_combine_comm_bytes / 1e9 / combine_t:.2f} GB/s, avg_t={combine_t * 1e6:.2f} us')
|
|
else:
|
|
print(f'[rank {rank}] Dispatch send/recv time: {dispatch_t * 2 * 1e6:.2f} us | '
|
|
f'Combine send/recv time: {combine_t * 2 * 1e6:.2f} us')
|
|
|
|
return hash_value
|
|
|
|
|
|
# noinspection PyUnboundLocalVariable
|
|
def test_loop(local_rank: int, num_local_ranks: int):
|
|
rank, num_ranks, group = init_dist(local_rank, num_local_ranks)
|
|
num_tokens, hidden, num_topk, num_experts = 128, 7168, 8, 288
|
|
|
|
num_rdma_bytes = deep_ep.Buffer.get_low_latency_rdma_size_hint(num_tokens, hidden, num_ranks, num_experts)
|
|
if local_rank == 0:
|
|
print(f'Allocating buffer size: {num_rdma_bytes / 1e6} MB ...', flush=True)
|
|
buffer = deep_ep.Buffer(group, num_rdma_bytes=num_rdma_bytes, low_latency_mode=True,
|
|
num_qps_per_rank=num_experts // num_ranks)
|
|
test_main(num_tokens, hidden, num_experts, num_topk, rank, num_ranks, group, buffer, seed=1)
|
|
|
|
do_pressure_test = False
|
|
for seed in range(int(1e9) if do_pressure_test else 0):
|
|
if local_rank == 0:
|
|
print(f'Testing with seed {seed} ...', flush=True)
|
|
ref_hash = test_main(num_tokens, hidden, num_experts, num_topk, rank, num_ranks, group, buffer, seed=seed)
|
|
for i in range(20):
|
|
assert test_main(num_tokens, hidden, num_experts, num_topk, rank, num_ranks, group, buffer, seed=seed) == ref_hash, f'Error: seed={seed}'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# TODO: you may modify NUMA binding for less CPU overhead
|
|
num_processes = 8
|
|
torch.multiprocessing.spawn(test_loop, args=(num_processes,), nprocs=num_processes)
|