mirror of
https://github.com/clearml/dropbear
synced 2025-01-31 02:46:58 +00:00
674a607488
--HG-- extra : convert_revision : cc8a8c49dc70e632c352853a39801089b08149be
459 lines
14 KiB
C
459 lines
14 KiB
C
/*
|
|
* Dropbear - a SSH2 server
|
|
* SSH client implementation
|
|
*
|
|
* This code is copied from the larger file "kex.c"
|
|
* some functions are verbatim, others are generalized --mihnea
|
|
*
|
|
* Copyright (c) 2002,2003 Matt Johnston
|
|
* Portions Copyright (c) 2004 by Mihnea Stoenescu
|
|
* All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE. */
|
|
|
|
#include "includes.h"
|
|
#include "dbutil.h"
|
|
#include "algo.h"
|
|
#include "buffer.h"
|
|
#include "session.h"
|
|
#include "kex.h"
|
|
#include "ssh.h"
|
|
#include "packet.h"
|
|
#include "bignum.h"
|
|
#include "random.h"
|
|
|
|
/* diffie-hellman-group1-sha1 value for p */
|
|
const unsigned char dh_p_val[] = {
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2,
|
|
0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
|
|
0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6,
|
|
0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
|
|
0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D,
|
|
0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45,
|
|
0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9,
|
|
0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
|
|
0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11,
|
|
0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
|
|
|
|
const int DH_G_VAL = 2;
|
|
|
|
static void gen_new_keys();
|
|
#ifndef DISABLE_ZLIB
|
|
static void gen_new_zstreams();
|
|
#endif
|
|
/* helper function for gen_new_keys */
|
|
static void hashkeys(unsigned char *out, int outlen,
|
|
const hash_state * hs, unsigned const char X);
|
|
|
|
|
|
/* Send our list of algorithms we can use */
|
|
void send_msg_kexinit() {
|
|
|
|
CHECKCLEARTOWRITE();
|
|
buf_putbyte(ses.writepayload, SSH_MSG_KEXINIT);
|
|
|
|
/* cookie */
|
|
genrandom(buf_getwriteptr(ses.writepayload, 16), 16);
|
|
buf_incrwritepos(ses.writepayload, 16);
|
|
|
|
/* kex algos */
|
|
buf_put_algolist(ses.writepayload, sshkex);
|
|
|
|
/* server_host_key_algorithms */
|
|
buf_put_algolist(ses.writepayload, sshhostkey);
|
|
|
|
/* encryption_algorithms_client_to_server */
|
|
buf_put_algolist(ses.writepayload, sshciphers);
|
|
|
|
/* encryption_algorithms_server_to_client */
|
|
buf_put_algolist(ses.writepayload, sshciphers);
|
|
|
|
/* mac_algorithms_client_to_server */
|
|
buf_put_algolist(ses.writepayload, sshhashes);
|
|
|
|
/* mac_algorithms_server_to_client */
|
|
buf_put_algolist(ses.writepayload, sshhashes);
|
|
|
|
/* compression_algorithms_client_to_server */
|
|
buf_put_algolist(ses.writepayload, sshcompress);
|
|
|
|
/* compression_algorithms_server_to_client */
|
|
buf_put_algolist(ses.writepayload, sshcompress);
|
|
|
|
/* languages_client_to_server */
|
|
buf_putstring(ses.writepayload, "", 0);
|
|
|
|
/* languages_server_to_client */
|
|
buf_putstring(ses.writepayload, "", 0);
|
|
|
|
/* first_kex_packet_follows - unimplemented for now */
|
|
buf_putbyte(ses.writepayload, 0x00);
|
|
|
|
/* reserved unit32 */
|
|
buf_putint(ses.writepayload, 0);
|
|
|
|
/* set up transmitted kex packet buffer for hashing.
|
|
* This is freed after the end of the kex */
|
|
ses.transkexinit = buf_newcopy(ses.writepayload);
|
|
|
|
encrypt_packet();
|
|
ses.dataallowed = 0; /* don't send other packets during kex */
|
|
|
|
TRACE(("DATAALLOWED=0"));
|
|
TRACE(("-> KEXINIT"));
|
|
ses.kexstate.sentkexinit = 1;
|
|
}
|
|
|
|
/* *** NOTE regarding (send|recv)_msg_newkeys ***
|
|
* Changed by mihnea from the original kex.c to set dataallowed after a
|
|
* completed key exchange, no matter the order in which it was performed.
|
|
* This enables client mode without affecting server functionality.
|
|
*/
|
|
|
|
/* Bring new keys into use after a key exchange, and let the client know*/
|
|
void send_msg_newkeys() {
|
|
|
|
TRACE(("enter send_msg_newkeys"));
|
|
|
|
/* generate the kexinit request */
|
|
CHECKCLEARTOWRITE();
|
|
buf_putbyte(ses.writepayload, SSH_MSG_NEWKEYS);
|
|
encrypt_packet();
|
|
|
|
|
|
/* set up our state */
|
|
if (ses.kexstate.recvnewkeys) {
|
|
TRACE(("while RECVNEWKEYS=1"));
|
|
gen_new_keys();
|
|
kexinitialise(); /* we've finished with this kex */
|
|
TRACE((" -> DATAALLOWED=1"));
|
|
ses.dataallowed = 1; /* we can send other packets again now */
|
|
} else {
|
|
ses.kexstate.sentnewkeys = 1;
|
|
TRACE(("SENTNEWKEYS=1"));
|
|
}
|
|
|
|
TRACE(("-> MSG_NEWKEYS"));
|
|
TRACE(("leave send_msg_newkeys"));
|
|
}
|
|
|
|
/* Bring the new keys into use after a key exchange */
|
|
void recv_msg_newkeys() {
|
|
|
|
TRACE(("<- MSG_NEWKEYS"));
|
|
TRACE(("enter recv_msg_newkeys"));
|
|
|
|
/* simply check if we've sent SSH_MSG_NEWKEYS, and if so,
|
|
* switch to the new keys */
|
|
if (ses.kexstate.sentnewkeys) {
|
|
TRACE(("while SENTNEWKEYS=1"));
|
|
gen_new_keys();
|
|
kexinitialise(); /* we've finished with this kex */
|
|
TRACE((" -> DATAALLOWED=1"));
|
|
ses.dataallowed = 1; /* we can send other packets again now */
|
|
} else {
|
|
TRACE(("RECVNEWKEYS=1"));
|
|
ses.kexstate.recvnewkeys = 1;
|
|
}
|
|
|
|
TRACE(("leave recv_msg_newkeys"));
|
|
}
|
|
|
|
|
|
/* Duplicated verbatim from kex.c --mihnea */
|
|
void kexinitialise() {
|
|
|
|
struct timeval tv;
|
|
|
|
TRACE(("kexinitialise()"));
|
|
|
|
/* sent/recv'd MSG_KEXINIT */
|
|
ses.kexstate.sentkexinit = 0;
|
|
ses.kexstate.recvkexinit = 0;
|
|
|
|
/* sent/recv'd MSG_NEWKEYS */
|
|
ses.kexstate.recvnewkeys = 0;
|
|
ses.kexstate.sentnewkeys = 0;
|
|
|
|
/* first_packet_follows */
|
|
/* TODO - currently not handled */
|
|
ses.kexstate.firstfollows = 0;
|
|
|
|
ses.kexstate.datatrans = 0;
|
|
ses.kexstate.datarecv = 0;
|
|
|
|
if (gettimeofday(&tv, 0) < 0) {
|
|
dropbear_exit("Error getting time");
|
|
}
|
|
ses.kexstate.lastkextime = tv.tv_sec;
|
|
|
|
}
|
|
|
|
/* Helper function for gen_new_keys, creates a hash. It makes a copy of the
|
|
* already initialised hash_state hs, which should already have processed
|
|
* the dh_K and hash, since these are common. X is the letter 'A', 'B' etc.
|
|
* out must have at least min(SHA1_HASH_SIZE, outlen) bytes allocated.
|
|
* The output will only be expanded once, since that is all that is required
|
|
* (for 3DES and SHA, with 24 and 20 bytes respectively).
|
|
*
|
|
* See Section 5.2 of the IETF secsh Transport Draft for details */
|
|
|
|
/* Duplicated verbatim from kex.c --mihnea */
|
|
static void hashkeys(unsigned char *out, int outlen,
|
|
const hash_state * hs, const unsigned char X) {
|
|
|
|
hash_state hs2;
|
|
unsigned char k2[SHA1_HASH_SIZE]; /* used to extending */
|
|
|
|
memcpy(&hs2, hs, sizeof(hash_state));
|
|
sha1_process(&hs2, &X, 1);
|
|
sha1_process(&hs2, ses.session_id, SHA1_HASH_SIZE);
|
|
sha1_done(&hs2, out);
|
|
if (SHA1_HASH_SIZE < outlen) {
|
|
/* need to extend */
|
|
memcpy(&hs2, hs, sizeof(hash_state));
|
|
sha1_process(&hs2, out, SHA1_HASH_SIZE);
|
|
sha1_done(&hs2, k2);
|
|
memcpy(&out[SHA1_HASH_SIZE], k2, outlen - SHA1_HASH_SIZE);
|
|
}
|
|
}
|
|
|
|
/* Generate the actual encryption/integrity keys, using the results of the
|
|
* key exchange, as specified in section 5.2 of the IETF secsh-transport
|
|
* draft. This occurs after the DH key-exchange.
|
|
*
|
|
* ses.newkeys is the new set of keys which are generated, these are only
|
|
* taken into use after both sides have sent a newkeys message */
|
|
|
|
/* Originally from kex.c, generalized for cli/svr mode --mihnea */
|
|
static void gen_new_keys() {
|
|
|
|
unsigned char C2S_IV[MAX_IV_LEN];
|
|
unsigned char C2S_key[MAX_KEY_LEN];
|
|
unsigned char S2C_IV[MAX_IV_LEN];
|
|
unsigned char S2C_key[MAX_KEY_LEN];
|
|
/* unsigned char key[MAX_KEY_LEN]; */
|
|
unsigned char *trans_IV, *trans_key, *recv_IV, *recv_key;
|
|
|
|
hash_state hs;
|
|
unsigned int C2S_keysize, S2C_keysize;
|
|
char mactransletter, macrecvletter; /* Client or server specific */
|
|
|
|
TRACE(("enter gen_new_keys"));
|
|
/* the dh_K and hash are the start of all hashes, we make use of that */
|
|
|
|
sha1_init(&hs);
|
|
sha1_process_mp(&hs, ses.dh_K);
|
|
mp_clear(ses.dh_K);
|
|
m_free(ses.dh_K);
|
|
sha1_process(&hs, ses.hash, SHA1_HASH_SIZE);
|
|
m_burn(ses.hash, SHA1_HASH_SIZE);
|
|
|
|
hashkeys(C2S_IV, SHA1_HASH_SIZE, &hs, 'A');
|
|
hashkeys(S2C_IV, SHA1_HASH_SIZE, &hs, 'B');
|
|
|
|
if (IS_DROPBEAR_CLIENT) {
|
|
trans_IV = C2S_IV;
|
|
recv_IV = S2C_IV;
|
|
trans_key = C2S_key;
|
|
recv_key = S2C_key;
|
|
C2S_keysize = ses.newkeys->trans_algo_crypt->keysize;
|
|
S2C_keysize = ses.newkeys->recv_algo_crypt->keysize;
|
|
mactransletter = 'E';
|
|
macrecvletter = 'F';
|
|
} else {
|
|
trans_IV = S2C_IV;
|
|
recv_IV = C2S_IV;
|
|
trans_key = S2C_key;
|
|
recv_key = C2S_key;
|
|
C2S_keysize = ses.newkeys->recv_algo_crypt->keysize;
|
|
S2C_keysize = ses.newkeys->trans_algo_crypt->keysize;
|
|
mactransletter = 'F';
|
|
macrecvletter = 'E';
|
|
}
|
|
|
|
hashkeys(C2S_key, C2S_keysize, &hs, 'C');
|
|
hashkeys(S2C_key, S2C_keysize, &hs, 'D');
|
|
|
|
if (cbc_start(
|
|
find_cipher(ses.newkeys->recv_algo_crypt->cipherdesc->name),
|
|
recv_IV, recv_key,
|
|
ses.newkeys->recv_algo_crypt->keysize, 0,
|
|
&ses.newkeys->recv_symmetric_struct) != CRYPT_OK) {
|
|
dropbear_exit("crypto error");
|
|
}
|
|
|
|
if (cbc_start(
|
|
find_cipher(ses.newkeys->trans_algo_crypt->cipherdesc->name),
|
|
trans_IV, trans_key,
|
|
ses.newkeys->trans_algo_crypt->keysize, 0,
|
|
&ses.newkeys->trans_symmetric_struct) != CRYPT_OK) {
|
|
dropbear_exit("crypto error");
|
|
}
|
|
|
|
/* MAC keys */
|
|
hashkeys(ses.newkeys->transmackey,
|
|
ses.newkeys->trans_algo_mac->keysize, &hs, mactransletter);
|
|
hashkeys(ses.newkeys->recvmackey,
|
|
ses.newkeys->recv_algo_mac->keysize, &hs, macrecvletter);
|
|
|
|
#ifndef DISABLE_ZLIB
|
|
gen_new_zstreams();
|
|
#endif
|
|
|
|
/* Switch over to the new keys */
|
|
m_burn(ses.keys, sizeof(struct key_context));
|
|
m_free(ses.keys);
|
|
ses.keys = ses.newkeys;
|
|
ses.newkeys = NULL;
|
|
|
|
TRACE(("leave gen_new_keys"));
|
|
}
|
|
|
|
#ifndef DISABLE_ZLIB
|
|
/* Set up new zlib compression streams, close the old ones. Only
|
|
* called from gen_new_keys() */
|
|
static void gen_new_zstreams() {
|
|
|
|
/* create new zstreams */
|
|
if (ses.newkeys->recv_algo_comp == DROPBEAR_COMP_ZLIB) {
|
|
ses.newkeys->recv_zstream = (z_streamp)m_malloc(sizeof(z_stream));
|
|
ses.newkeys->recv_zstream->zalloc = Z_NULL;
|
|
ses.newkeys->recv_zstream->zfree = Z_NULL;
|
|
|
|
if (inflateInit(ses.newkeys->recv_zstream) != Z_OK) {
|
|
dropbear_exit("zlib error");
|
|
}
|
|
} else {
|
|
ses.newkeys->recv_zstream = NULL;
|
|
}
|
|
|
|
if (ses.newkeys->trans_algo_comp == DROPBEAR_COMP_ZLIB) {
|
|
ses.newkeys->trans_zstream = (z_streamp)m_malloc(sizeof(z_stream));
|
|
ses.newkeys->trans_zstream->zalloc = Z_NULL;
|
|
ses.newkeys->trans_zstream->zfree = Z_NULL;
|
|
|
|
if (deflateInit(ses.newkeys->trans_zstream, Z_DEFAULT_COMPRESSION)
|
|
!= Z_OK) {
|
|
dropbear_exit("zlib error");
|
|
}
|
|
} else {
|
|
ses.newkeys->trans_zstream = NULL;
|
|
}
|
|
|
|
/* clean up old keys */
|
|
if (ses.keys->recv_zstream != NULL) {
|
|
if (inflateEnd(ses.keys->recv_zstream) == Z_STREAM_ERROR) {
|
|
/* Z_DATA_ERROR is ok, just means that stream isn't ended */
|
|
dropbear_exit("crypto error");
|
|
}
|
|
m_free(ses.keys->recv_zstream);
|
|
}
|
|
if (ses.keys->trans_zstream != NULL) {
|
|
if (deflateEnd(ses.keys->trans_zstream) == Z_STREAM_ERROR) {
|
|
/* Z_DATA_ERROR is ok, just means that stream isn't ended */
|
|
dropbear_exit("crypto error");
|
|
}
|
|
m_free(ses.keys->trans_zstream);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Executed upon receiving a kexinit message from the client to initiate
|
|
* key exchange. If we haven't already done so, we send the list of our
|
|
* preferred algorithms. The client's requested algorithms are processed,
|
|
* and we calculate the first portion of the key-exchange-hash for used
|
|
* later in the key exchange. No response is sent, as the client should
|
|
* initiate the diffie-hellman key exchange */
|
|
|
|
/* Originally from kex.c, generalized for cli/svr mode --mihnea */
|
|
/* Belongs in common_kex.c where it should be moved after review */
|
|
void recv_msg_kexinit() {
|
|
|
|
TRACE(("<- KEXINIT"));
|
|
TRACE(("enter recv_msg_kexinit"));
|
|
|
|
/* start the kex hash */
|
|
ses.kexhashbuf = buf_new(MAX_KEXHASHBUF);
|
|
|
|
if (!ses.kexstate.sentkexinit) {
|
|
/* we need to send a kex packet */
|
|
send_msg_kexinit();
|
|
TRACE(("continue recv_msg_kexinit: sent kexinit"));
|
|
}
|
|
|
|
|
|
if (IS_DROPBEAR_CLIENT) {
|
|
|
|
/* read the peer's choice of algos */
|
|
cli_read_kex();
|
|
|
|
/* V_C, the client's version string (CR and NL excluded) */
|
|
buf_putstring(ses.kexhashbuf,
|
|
(unsigned char*)LOCAL_IDENT, strlen(LOCAL_IDENT));
|
|
/* V_S, the server's version string (CR and NL excluded) */
|
|
buf_putstring(ses.kexhashbuf,
|
|
ses.remoteident, strlen((char*)ses.remoteident));
|
|
|
|
/* I_C, the payload of the client's SSH_MSG_KEXINIT */
|
|
buf_putstring(ses.kexhashbuf,
|
|
buf_getptr(ses.transkexinit, ses.transkexinit->len),
|
|
ses.transkexinit->len);
|
|
/* I_S, the payload of the server's SSH_MSG_KEXINIT */
|
|
buf_setpos(ses.payload, 0);
|
|
buf_putstring(ses.kexhashbuf,
|
|
buf_getptr(ses.payload, ses.payload->len),
|
|
ses.payload->len);
|
|
|
|
} else {
|
|
|
|
/* read the peer's choice of algos */
|
|
svr_read_kex();
|
|
/* V_C, the client's version string (CR and NL excluded) */
|
|
buf_putstring(ses.kexhashbuf,
|
|
ses.remoteident, strlen((char*)ses.remoteident));
|
|
/* V_S, the server's version string (CR and NL excluded) */
|
|
buf_putstring(ses.kexhashbuf,
|
|
(unsigned char*)LOCAL_IDENT, strlen(LOCAL_IDENT));
|
|
|
|
/* I_C, the payload of the client's SSH_MSG_KEXINIT */
|
|
buf_setpos(ses.payload, 0);
|
|
buf_putstring(ses.kexhashbuf,
|
|
buf_getptr(ses.payload, ses.payload->len),
|
|
ses.payload->len);
|
|
/* I_S, the payload of the server's SSH_MSG_KEXINIT */
|
|
buf_putstring(ses.kexhashbuf,
|
|
buf_getptr(ses.transkexinit, ses.transkexinit->len),
|
|
ses.transkexinit->len);
|
|
}
|
|
|
|
buf_free(ses.transkexinit);
|
|
ses.transkexinit = NULL;
|
|
/* the rest of ses.kexhashbuf will be done after DH exchange */
|
|
|
|
ses.kexstate.recvkexinit = 1;
|
|
// ses.expecting = SSH_MSG_KEXDH_INIT;
|
|
ses.expecting = 0;
|
|
|
|
TRACE(("leave recv_msg_kexinit"));
|
|
}
|
|
|