mirror of
https://github.com/clearml/dropbear
synced 2025-06-26 18:17:32 +00:00
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583)
to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64) --HG-- extra : convert_revision : fdf4a7a3b97ae5046139915de7e40399cceb2c01
This commit is contained in:
109
libtommath/bn_mp_gcd.c
Normal file
109
libtommath/bn_mp_gcd.c
Normal file
@@ -0,0 +1,109 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_GCD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* Greatest Common Divisor using the binary method */
|
||||
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int u, v;
|
||||
int k, u_lsb, v_lsb, res;
|
||||
|
||||
/* either zero than gcd is the largest */
|
||||
if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
|
||||
return mp_abs (b, c);
|
||||
}
|
||||
if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
|
||||
return mp_abs (a, c);
|
||||
}
|
||||
|
||||
/* optimized. At this point if a == 0 then
|
||||
* b must equal zero too
|
||||
*/
|
||||
if (mp_iszero (a) == 1) {
|
||||
mp_zero(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* get copies of a and b we can modify */
|
||||
if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
|
||||
goto LBL_U;
|
||||
}
|
||||
|
||||
/* must be positive for the remainder of the algorithm */
|
||||
u.sign = v.sign = MP_ZPOS;
|
||||
|
||||
/* B1. Find the common power of two for u and v */
|
||||
u_lsb = mp_cnt_lsb(&u);
|
||||
v_lsb = mp_cnt_lsb(&v);
|
||||
k = MIN(u_lsb, v_lsb);
|
||||
|
||||
if (k > 0) {
|
||||
/* divide the power of two out */
|
||||
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
|
||||
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
/* divide any remaining factors of two out */
|
||||
if (u_lsb != k) {
|
||||
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
if (v_lsb != k) {
|
||||
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
while (mp_iszero(&v) == 0) {
|
||||
/* make sure v is the largest */
|
||||
if (mp_cmp_mag(&u, &v) == MP_GT) {
|
||||
/* swap u and v to make sure v is >= u */
|
||||
mp_exch(&u, &v);
|
||||
}
|
||||
|
||||
/* subtract smallest from largest */
|
||||
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
|
||||
/* Divide out all factors of two */
|
||||
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
/* multiply by 2**k which we divided out at the beginning */
|
||||
if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
c->sign = MP_ZPOS;
|
||||
res = MP_OKAY;
|
||||
LBL_V:mp_clear (&u);
|
||||
LBL_U:mp_clear (&v);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
Reference in New Issue
Block a user