clearml/trains/binding/joblib_bind.py

195 lines
7.5 KiB
Python

import sys
import warnings
from functools import partial
import six
from pathlib2 import Path
from .import_bind import PostImportHookPatching
from ..binding.frameworks import _patched_call, _Empty, WeightsFileHandler
from ..config import running_remotely
from ..debugging.log import LoggerRoot
from ..model import Framework
from ..utilities.lowlevel.file_access import get_filename_from_file_object, buffer_writer_close_cb
class PatchedJoblib(object):
_patched_joblib = False
_patched_sk_joblib = False
_current_task = None
@staticmethod
def patch_joblib():
# try manually
PatchedJoblib._patch_joblib()
# register callback
PostImportHookPatching.add_on_import('joblib',
PatchedJoblib._patch_joblib)
PostImportHookPatching.add_on_import('sklearn',
PatchedJoblib._patch_joblib)
@staticmethod
def _patch_joblib():
# noinspection PyBroadException
try:
if not PatchedJoblib._patched_joblib and 'joblib' in sys.modules:
PatchedJoblib._patched_joblib = True
try:
import joblib
except ImportError:
joblib = None
if joblib:
joblib.numpy_pickle._write_fileobject = _patched_call(
joblib.numpy_pickle._write_fileobject,
partial(PatchedJoblib._write_fileobject, joblib.numpy_pickle))
joblib.numpy_pickle._read_fileobject = _patched_call(
joblib.numpy_pickle._read_fileobject, PatchedJoblib._load)
joblib.numpy_pickle.NumpyPickler.__init__ = _patched_call(
joblib.numpy_pickle.NumpyPickler.__init__,
PatchedJoblib._numpypickler)
if not PatchedJoblib._patched_sk_joblib and 'sklearn' in sys.modules:
PatchedJoblib._patched_sk_joblib = True
try:
import sklearn # noqa: F401
# avoid deprecation warning, we must import sklearn before, so we could catch it
with warnings.catch_warnings():
warnings.simplefilter("ignore")
from sklearn.externals import joblib as sk_joblib
except ImportError:
sk_joblib = None
if sk_joblib:
sk_joblib.numpy_pickle._write_fileobject = _patched_call(
sk_joblib.numpy_pickle._write_fileobject,
partial(PatchedJoblib._write_fileobject, sk_joblib.numpy_pickle))
sk_joblib.numpy_pickle._read_fileobject = _patched_call(
sk_joblib.numpy_pickle._read_fileobject, PatchedJoblib._load)
sk_joblib.numpy_pickle.NumpyPickler.__init__ = _patched_call(
sk_joblib.numpy_pickle.NumpyPickler.__init__,
PatchedJoblib._numpypickler)
except Exception:
return False
return True
@staticmethod
def update_current_task(task):
PatchedJoblib._current_task = task
PatchedJoblib.patch_joblib()
@staticmethod
def _dump(original_fn, obj, f, *args, **kwargs):
ret = original_fn(obj, f, *args, **kwargs)
if not PatchedJoblib._current_task:
return ret
PatchedJoblib._register_dump(obj, f)
return ret
@staticmethod
def _numpypickler(original_fn, obj, f, *args, **kwargs):
ret = original_fn(obj, f, *args, **kwargs)
if not PatchedJoblib._current_task:
return ret
fname = f if isinstance(f, six.string_types) else None
fileobj = ret if isinstance(f, six.string_types) else f
if fileobj and hasattr(fileobj, 'close'):
def callback(*_):
PatchedJoblib._register_dump(obj, fname or fileobj)
if isinstance(fname, six.string_types) or hasattr(fileobj, 'name'):
buffer_writer_close_cb(fileobj, callback)
else:
PatchedJoblib._register_dump(obj, f)
return ret
@staticmethod
def _write_fileobject(obj, original_fn, f, *args, **kwargs):
ret = original_fn(f, *args, **kwargs)
if not PatchedJoblib._current_task:
return ret
fname = f if isinstance(f, six.string_types) else None
fileobj = ret if isinstance(f, six.string_types) else f
if fileobj and hasattr(fileobj, 'close'):
def callback(*_):
PatchedJoblib._register_dump(obj, fname or fileobj)
if isinstance(fname, six.string_types) or hasattr(fileobj, 'name'):
buffer_writer_close_cb(fileobj, callback)
else:
PatchedJoblib._register_dump(obj, f)
return ret
@staticmethod
def _register_dump(obj, f):
filename = get_filename_from_file_object(f, flush=True)
if not filename:
return
# give the model a descriptive name based on the file name
# noinspection PyBroadException
try:
model_name = Path(filename).stem
except Exception:
model_name = None
current_framework = PatchedJoblib.get_model_framework(obj)
WeightsFileHandler.create_output_model(obj, filename, current_framework,
PatchedJoblib._current_task, singlefile=True, model_name=model_name)
@staticmethod
def _load(original_fn, f, *args, **kwargs):
if not PatchedJoblib._current_task:
return original_fn(f, *args, **kwargs)
filename = get_filename_from_file_object(f, flush=False)
# register input model
empty = _Empty()
# Hack: disabled
if False and running_remotely():
# we assume scikit-learn, for the time being
current_framework = Framework.scikitlearn
filename = WeightsFileHandler.restore_weights_file(empty, filename, current_framework,
PatchedJoblib._current_task)
model = original_fn(filename or f, *args, **kwargs)
else:
# try to load model before registering, in case we fail
model = original_fn(f, *args, **kwargs)
current_framework = PatchedJoblib.get_model_framework(model)
WeightsFileHandler.restore_weights_file(empty, filename, current_framework,
PatchedJoblib._current_task)
if empty.trains_in_model:
# noinspection PyBroadException
try:
model.trains_in_model = empty.trains_in_model
except Exception:
pass
return model
@staticmethod
def get_model_framework(obj):
framework = Framework.scikitlearn
object_orig_module = None
# noinspection PyBroadException
try:
object_orig_module = obj.__module__ if hasattr(obj, '__module__') else obj.__package__
model = object_orig_module.partition(".")[0]
if model == 'sklearn':
framework = Framework.scikitlearn
elif model == 'xgboost':
framework = Framework.xgboost
else:
framework = Framework.scikitlearn
except Exception:
LoggerRoot.get_base_logger().debug(
"Can't get model framework {}, model framework will be: {} ".format(object_orig_module, framework))
finally:
return framework