clearml/trains/binding/artifacts.py

810 lines
34 KiB
Python

import json
import mimetypes
import os
import pickle
from six.moves.urllib.parse import quote
from copy import deepcopy
from datetime import datetime
from multiprocessing import RLock, Event
from multiprocessing.pool import ThreadPool
from tempfile import mkdtemp, mkstemp
from threading import Thread
from time import time
from zipfile import ZipFile, ZIP_DEFLATED
import humanfriendly
import six
from PIL import Image
from pathlib2 import Path
from six.moves.urllib.parse import urlparse
from typing import Dict, Union, Optional, Any, Sequence
from ..backend_api import Session
from ..backend_api.services import tasks
from ..backend_interface.metrics.events import UploadEvent
from ..debugging.log import LoggerRoot
from ..storage.helper import remote_driver_schemes
from ..storage.util import sha256sum
try:
import pandas as pd
DataFrame = pd.DataFrame
except ImportError:
pd = None
DataFrame = None
try:
import numpy as np
except ImportError:
np = None
try:
from pathlib import Path as pathlib_Path
except ImportError:
pathlib_Path = None
class Artifact(object):
"""
Read-Only Artifact object
"""
@property
def url(self):
# type: () -> str
"""
:return: The URL of uploaded artifact.
"""
return self._url
@property
def name(self):
# type: () -> str
"""
:return: The name of artifact.
"""
return self._name
@property
def size(self):
# type: () -> int
"""
:return: The size in bytes of artifact.
"""
return self._size
@property
def type(self):
# type: () -> str
"""
:return: The type (str) of of artifact.
"""
return self._type
@property
def mode(self):
# type: () -> Union["input", "output"] # noqa: F821
"""
:return: The mode (str) of of artifact: "input" or "output".
"""
return self._mode
@property
def hash(self):
# type: () -> str
"""
:return: SHA2 hash (str) of of artifact content.
"""
return self._hash
@property
def timestamp(self):
# type: () -> datetime
"""
:return: Timestamp (datetime) of uploaded artifact.
"""
return self._timestamp
@property
def metadata(self):
# type: () -> Optional[Dict[str, str]]
"""
:return: Key/Value dictionary attached to artifact.
"""
return self._metadata
@property
def preview(self):
# type: () -> str
"""
:return: A string (str) representation of the artifact.
"""
return self._preview
def __init__(self, artifact_api_object):
"""
construct read-only object from api artifact object
:param tasks.Artifact artifact_api_object:
"""
self._name = artifact_api_object.key
self._size = artifact_api_object.content_size
self._type = artifact_api_object.type
self._mode = artifact_api_object.mode
self._url = artifact_api_object.uri
self._hash = artifact_api_object.hash
self._timestamp = datetime.fromtimestamp(artifact_api_object.timestamp)
self._metadata = dict(artifact_api_object.display_data) if artifact_api_object.display_data else {}
self._preview = artifact_api_object.type_data.preview if artifact_api_object.type_data else None
self._object = None
def get(self):
# type: () -> Any
"""
Return an object constructed from the artifact file
Currently supported types: Numpy.array, pandas.DataFrame, PIL.Image, dict (json)
All other types will return a pathlib2.Path object pointing to a local copy of the artifacts file (or directory)
:return: One of the following objects Numpy.array, pandas.DataFrame, PIL.Image, dict (json), or pathlib2.Path.
"""
if self._object:
return self._object
local_file = self.get_local_copy(raise_on_error=True)
# noinspection PyProtectedMember
if self.type == 'numpy' and np:
self._object = np.load(local_file)[self.name]
elif self.type == Artifacts._pd_artifact_type and pd:
self._object = pd.read_csv(local_file)
elif self.type == 'pandas' and pd:
self._object = pd.read_csv(local_file, index_col=[0])
elif self.type == 'image':
self._object = Image.open(local_file)
elif self.type == 'JSON':
with open(local_file, 'rt') as f:
self._object = json.load(f)
elif self.type == 'string':
with open(local_file, 'rt') as f:
self._object = f.read()
elif self.type == 'pickle':
with open(local_file, 'rb') as f:
self._object = pickle.load(f)
local_file = Path(local_file)
if self._object is None:
self._object = local_file
return self._object
def get_local_copy(self, extract_archive=True, raise_on_error=False):
# type: (bool, bool) -> str
"""
:param bool extract_archive: If True and artifact is of type 'archive' (compressed folder)
The returned path will be a temporary folder containing the archive content
:param bool raise_on_error: If True and the artifact could not be downloaded,
raise ValueError, otherwise return None on failure and output log warning.
:raise: Raises error if local copy not found.
:return: A local path to a downloaded copy of the artifact.
"""
from trains.storage import StorageManager
local_copy = StorageManager.get_local_copy(
remote_url=self.url,
extract_archive=extract_archive and self.type == 'archive',
name=self.name
)
if raise_on_error and local_copy is None:
raise ValueError(
"Could not retrieve a local copy of artifact {}, failed downloading {}".format(self.name, self.url))
return local_copy
def __repr__(self):
return str({'name': self.name, 'size': self.size, 'type': self.type, 'mode': self.mode, 'url': self.url,
'hash': self.hash, 'timestamp': self.timestamp,
'metadata': self.metadata, 'preview': self.preview, })
class Artifacts(object):
max_preview_size_bytes = 65536
_flush_frequency_sec = 300.
# notice these two should match
_save_format = '.csv.gz'
_compression = 'gzip'
# hashing constants
_hash_block_size = 65536
_pd_artifact_type = 'data-audit-table'
class _ProxyDictWrite(dict):
""" Dictionary wrapper that updates an arguments instance on any item set in the dictionary """
def __init__(self, artifacts_manager, *args, **kwargs):
super(Artifacts._ProxyDictWrite, self).__init__(*args, **kwargs)
self._artifacts_manager = artifacts_manager
# list of artifacts we should not upload (by name & weak-reference)
self.artifact_metadata = {}
# list of hash columns to calculate uniqueness for the artifacts
self.artifact_hash_columns = {}
def __setitem__(self, key, value):
# check that value is of type pandas
if pd and isinstance(value, pd.DataFrame):
super(Artifacts._ProxyDictWrite, self).__setitem__(key, value)
if self._artifacts_manager:
self._artifacts_manager.flush()
else:
raise ValueError('Artifacts currently support pandas.DataFrame objects only')
def unregister_artifact(self, name):
self.artifact_metadata.pop(name, None)
self.pop(name, None)
def add_metadata(self, name, metadata):
self.artifact_metadata[name] = deepcopy(metadata)
def get_metadata(self, name):
return self.artifact_metadata.get(name)
def add_hash_columns(self, artifact_name, hash_columns):
self.artifact_hash_columns[artifact_name] = hash_columns
def get_hash_columns(self, artifact_name):
return self.artifact_hash_columns.get(artifact_name)
@property
def registered_artifacts(self):
# type: () -> Dict[str, Artifact]
return self._artifacts_container
@property
def summary(self):
# type: () -> str
return self._summary
def __init__(self, task):
self._task = task
# notice the double link, this is important since the Artifact
# dictionary needs to signal the Artifacts base on changes
self._artifacts_container = self._ProxyDictWrite(self)
self._last_artifacts_upload = {}
self._unregister_request = set()
self._thread = None
self._flush_event = Event()
self._exit_flag = False
self._summary = ''
self._temp_folder = []
self._task_artifact_list = []
self._task_edit_lock = RLock()
self._storage_prefix = None
def register_artifact(self, name, artifact, metadata=None, uniqueness_columns=True):
# type: (str, DataFrame, Optional[dict], Union[bool, Sequence[str]]) -> ()
"""
:param str name: name of the artifacts. Notice! it will override previous artifacts if name already exists.
:param pandas.DataFrame artifact: artifact object, supported artifacts object types: pandas.DataFrame
:param dict metadata: dictionary of key value to store with the artifact (visible in the UI)
:param list uniqueness_columns: list of columns for artifact uniqueness comparison criteria. The default value
is True, which equals to all the columns (same as artifact.columns).
"""
# currently we support pandas.DataFrame (which we will upload as csv.gz)
if name in self._artifacts_container:
LoggerRoot.get_base_logger().info('Register artifact, overwriting existing artifact \"{}\"'.format(name))
self._artifacts_container.add_hash_columns(
name, list(artifact.columns if uniqueness_columns is True else uniqueness_columns)
)
self._artifacts_container[name] = artifact
if metadata:
self._artifacts_container.add_metadata(name, metadata)
def unregister_artifact(self, name):
# type: (str) -> ()
# Remove artifact from the watch list
self._unregister_request.add(name)
self.flush()
def upload_artifact(self, name, artifact_object=None, metadata=None, preview=None,
delete_after_upload=False, auto_pickle=True, wait_on_upload=False):
# type: (str, Optional[object], Optional[dict], Optional[str], bool, bool, bool) -> bool
if not Session.check_min_api_version('2.3'):
LoggerRoot.get_base_logger().warning('Artifacts not supported by your TRAINS-server version, '
'please upgrade to the latest server version')
return False
if name in self._artifacts_container:
raise ValueError("Artifact by the name of {} is already registered, use register_artifact".format(name))
# cast preview to string
if preview:
preview = str(preview)
# try to convert string Path object (it might reference a file/folder)
# dont not try to serialize long texts.
if isinstance(artifact_object, six.string_types) and len(artifact_object) < 2048:
# noinspection PyBroadException
try:
artifact_path = Path(artifact_object)
if artifact_path.exists():
artifact_object = artifact_path
elif '*' in artifact_object or '?' in artifact_object:
# hackish, detect wildcard in tr files
folder = Path('').joinpath(*artifact_path.parts[:-1])
if folder.is_dir() and folder.parts:
wildcard = artifact_path.parts[-1]
if list(Path(folder).rglob(wildcard)):
artifact_object = artifact_path
except Exception:
pass
artifact_type_data = tasks.ArtifactTypeData()
artifact_type_data.preview = ''
override_filename_in_uri = None
override_filename_ext_in_uri = None
uri = None
if np and isinstance(artifact_object, np.ndarray):
artifact_type = 'numpy'
artifact_type_data.content_type = 'application/numpy'
artifact_type_data.preview = preview or str(artifact_object.__repr__())
override_filename_ext_in_uri = '.npz'
override_filename_in_uri = name + override_filename_ext_in_uri
fd, local_filename = mkstemp(prefix=quote(name, safe="") + '.', suffix=override_filename_ext_in_uri)
os.close(fd)
np.savez_compressed(local_filename, **{name: artifact_object})
delete_after_upload = True
elif pd and isinstance(artifact_object, pd.DataFrame):
artifact_type = 'pandas'
artifact_type_data.content_type = 'text/csv'
artifact_type_data.preview = preview or str(artifact_object.__repr__())
override_filename_ext_in_uri = self._save_format
override_filename_in_uri = name
fd, local_filename = mkstemp(prefix=quote(name, safe="") + '.', suffix=override_filename_ext_in_uri)
os.close(fd)
artifact_object.to_csv(local_filename, compression=self._compression)
delete_after_upload = True
elif isinstance(artifact_object, Image.Image):
artifact_type = 'image'
artifact_type_data.content_type = 'image/png'
desc = str(artifact_object.__repr__())
artifact_type_data.preview = preview or desc[1:desc.find(' at ')]
override_filename_ext_in_uri = '.png'
override_filename_in_uri = name + override_filename_ext_in_uri
fd, local_filename = mkstemp(prefix=quote(name, safe="") + '.', suffix=override_filename_ext_in_uri)
os.close(fd)
artifact_object.save(local_filename)
delete_after_upload = True
elif isinstance(artifact_object, dict):
artifact_type = 'JSON'
artifact_type_data.content_type = 'application/json'
json_text = json.dumps(artifact_object, sort_keys=True, indent=4)
override_filename_ext_in_uri = '.json'
override_filename_in_uri = name + override_filename_ext_in_uri
fd, local_filename = mkstemp(prefix=quote(name, safe="") + '.', suffix=override_filename_ext_in_uri)
os.write(fd, bytes(json_text.encode()))
os.close(fd)
preview = preview or json_text
if len(preview) < self.max_preview_size_bytes:
artifact_type_data.preview = preview
else:
artifact_type_data.preview = '# full json too large to store, storing first {}kb\n{}'.format(
self.max_preview_size_bytes//1024, preview[:self.max_preview_size_bytes]
)
delete_after_upload = True
elif isinstance(artifact_object, (Path, pathlib_Path,) if pathlib_Path is not None else (Path,)):
# check if single file
artifact_object = Path(artifact_object)
artifact_object.expanduser().absolute()
# noinspection PyBroadException
try:
create_zip_file = not artifact_object.is_file()
except Exception: # Hack for windows pathlib2 bug, is_file isn't valid.
create_zip_file = True
else: # We assume that this is not Windows os
if artifact_object.is_dir():
# change to wildcard
artifact_object /= '*'
if create_zip_file:
folder = Path('').joinpath(*artifact_object.parts[:-1])
if not folder.is_dir() or not folder.parts:
raise ValueError("Artifact file/folder '{}' could not be found".format(
artifact_object.as_posix()))
wildcard = artifact_object.parts[-1]
files = list(Path(folder).rglob(wildcard))
override_filename_ext_in_uri = '.zip'
override_filename_in_uri = folder.parts[-1] + override_filename_ext_in_uri
fd, zip_file = mkstemp(
prefix=quote(folder.parts[-1], safe="") + '.', suffix=override_filename_ext_in_uri
)
try:
artifact_type_data.content_type = 'application/zip'
archive_preview = 'Archive content {}:\n'.format(artifact_object.as_posix())
with ZipFile(zip_file, 'w', allowZip64=True, compression=ZIP_DEFLATED) as zf:
for filename in sorted(files):
if filename.is_file():
relative_file_name = filename.relative_to(folder).as_posix()
archive_preview += '{} - {}\n'.format(
relative_file_name, humanfriendly.format_size(filename.stat().st_size))
zf.write(filename.as_posix(), arcname=relative_file_name)
except Exception as e:
# failed uploading folder:
LoggerRoot.get_base_logger().warning('Exception {}\nFailed zipping artifact folder {}'.format(
folder, e))
return False
finally:
os.close(fd)
artifact_type_data.preview = preview or archive_preview
artifact_object = zip_file
artifact_type = 'archive'
artifact_type_data.content_type = mimetypes.guess_type(artifact_object)[0]
local_filename = artifact_object
delete_after_upload = True
else:
if not artifact_object.is_file():
raise ValueError("Artifact file '{}' could not be found".format(artifact_object.as_posix()))
override_filename_in_uri = artifact_object.parts[-1]
artifact_type_data.preview = preview or '{} - {}\n'.format(
artifact_object, humanfriendly.format_size(artifact_object.stat().st_size))
artifact_object = artifact_object.as_posix()
artifact_type = 'custom'
artifact_type_data.content_type = mimetypes.guess_type(artifact_object)[0]
local_filename = artifact_object
elif (
isinstance(artifact_object, six.string_types) and len(artifact_object) < 4096
and urlparse(artifact_object).scheme in remote_driver_schemes
):
# we should not upload this, just register
local_filename = None
uri = artifact_object
artifact_type = 'custom'
artifact_type_data.content_type = mimetypes.guess_type(artifact_object)[0]
if preview:
artifact_type_data.preview = preview
elif isinstance(artifact_object, six.string_types):
# if we got here, we should store it as text file.
artifact_type = 'string'
artifact_type_data.content_type = 'text/plain'
if preview:
artifact_type_data.preview = preview
elif len(artifact_object) < self.max_preview_size_bytes:
artifact_type_data.preview = artifact_object
else:
artifact_type_data.preview = '# full text too large to store, storing first {}kb\n{}'.format(
self.max_preview_size_bytes//1024, artifact_object[:self.max_preview_size_bytes]
)
delete_after_upload = True
override_filename_ext_in_uri = '.txt'
override_filename_in_uri = name + override_filename_ext_in_uri
fd, local_filename = mkstemp(prefix=quote(name, safe="") + '.', suffix=override_filename_ext_in_uri)
os.close(fd)
# noinspection PyBroadException
try:
with open(local_filename, 'wt') as f:
f.write(artifact_object)
except Exception:
# cleanup and raise exception
os.unlink(local_filename)
raise
elif auto_pickle:
# if we are here it means we do not know what to do with the object, so we serialize it with pickle.
artifact_type = 'pickle'
artifact_type_data.content_type = 'application/pickle'
# noinspection PyBroadException
try:
artifact_type_data.preview = preview or str(artifact_object.__repr__())[:self.max_preview_size_bytes]
except Exception:
artifact_type_data.preview = preview or ''
delete_after_upload = True
override_filename_ext_in_uri = '.pkl'
override_filename_in_uri = name + override_filename_ext_in_uri
fd, local_filename = mkstemp(prefix=quote(name, safe="") + '.', suffix=override_filename_ext_in_uri)
os.close(fd)
# noinspection PyBroadException
try:
with open(local_filename, 'wb') as f:
pickle.dump(artifact_object, f)
except Exception:
# cleanup and raise exception
os.unlink(local_filename)
raise
else:
raise ValueError("Artifact type {} not supported".format(type(artifact_object)))
# remove from existing list, if exists
for artifact in self._task_artifact_list:
if artifact.key == name:
if artifact.type == self._pd_artifact_type:
raise ValueError("Artifact of name {} already registered, "
"use register_artifact instead".format(name))
self._task_artifact_list.remove(artifact)
break
if not local_filename:
file_size = None
file_hash = None
else:
# check that the file to upload exists
local_filename = Path(local_filename).absolute()
if not local_filename.exists() or not local_filename.is_file():
LoggerRoot.get_base_logger().warning('Artifact upload failed, cannot find file {}'.format(
local_filename.as_posix()))
return False
file_hash, _ = sha256sum(local_filename.as_posix(), block_size=Artifacts._hash_block_size)
file_size = local_filename.stat().st_size
uri = self._upload_local_file(local_filename, name,
delete_after_upload=delete_after_upload,
override_filename=override_filename_in_uri,
override_filename_ext=override_filename_ext_in_uri,
wait_on_upload=wait_on_upload)
timestamp = int(time())
artifact = tasks.Artifact(key=name, type=artifact_type,
uri=uri,
content_size=file_size,
hash=file_hash,
timestamp=timestamp,
type_data=artifact_type_data,
display_data=[(str(k), str(v)) for k, v in metadata.items()] if metadata else None)
# update task artifacts
with self._task_edit_lock:
self._task_artifact_list.append(artifact)
self._task.set_artifacts(self._task_artifact_list)
return True
def flush(self):
# type: () -> ()
# start the thread if it hasn't already:
self._start()
# flush the current state of all artifacts
self._flush_event.set()
def stop(self, wait=True):
# type: (bool) -> ()
# stop the daemon thread and quit
# wait until thread exists
self._exit_flag = True
self._flush_event.set()
if wait:
if self._thread:
self._thread.join()
# remove all temp folders
for f in self._temp_folder:
# noinspection PyBroadException
try:
Path(f).rmdir()
except Exception:
pass
def _start(self):
# type: () -> ()
""" Start daemon thread if any artifacts are registered and thread is not up yet """
if not self._thread and self._artifacts_container:
# start the daemon thread
self._flush_event.clear()
self._thread = Thread(target=self._daemon)
self._thread.daemon = True
self._thread.start()
def _daemon(self):
# type: () -> ()
while not self._exit_flag:
self._flush_event.wait(self._flush_frequency_sec)
self._flush_event.clear()
artifact_keys = list(self._artifacts_container.keys())
for name in artifact_keys:
try:
self._upload_data_audit_artifacts(name)
except Exception as e:
LoggerRoot.get_base_logger().warning(str(e))
# create summary
self._summary = self._get_statistics()
def _upload_data_audit_artifacts(self, name):
# type: (str) -> ()
logger = self._task.get_logger()
pd_artifact = self._artifacts_container.get(name)
pd_metadata = self._artifacts_container.get_metadata(name)
# remove from artifacts watch list
if name in self._unregister_request:
try:
self._unregister_request.remove(name)
except KeyError:
pass
self._artifacts_container.unregister_artifact(name)
if pd_artifact is None:
return
override_filename_ext_in_uri = self._save_format
override_filename_in_uri = name
fd, local_csv = mkstemp(prefix=quote(name, safe="") + '.', suffix=override_filename_ext_in_uri)
os.close(fd)
local_csv = Path(local_csv)
pd_artifact.to_csv(local_csv.as_posix(), index=False, compression=self._compression)
current_sha2, file_sha2 = sha256sum(
local_csv.as_posix(), skip_header=32, block_size=Artifacts._hash_block_size)
if name in self._last_artifacts_upload:
previous_sha2 = self._last_artifacts_upload[name]
if previous_sha2 == current_sha2:
# nothing to do, we can skip the upload
# noinspection PyBroadException
try:
local_csv.unlink()
except Exception:
pass
return
self._last_artifacts_upload[name] = current_sha2
# If old trains-server, upload as debug image
if not Session.check_min_api_version('2.3'):
logger.report_image(title='artifacts', series=name, local_path=local_csv.as_posix(),
delete_after_upload=True, iteration=self._task.get_last_iteration(),
max_image_history=2)
return
# Find our artifact
artifact = None
for an_artifact in self._task_artifact_list:
if an_artifact.key == name:
artifact = an_artifact
break
file_size = local_csv.stat().st_size
# upload file
uri = self._upload_local_file(local_csv, name, delete_after_upload=True,
override_filename=override_filename_in_uri,
override_filename_ext=override_filename_ext_in_uri)
# update task artifacts
with self._task_edit_lock:
if not artifact:
artifact = tasks.Artifact(key=name, type=self._pd_artifact_type)
self._task_artifact_list.append(artifact)
artifact_type_data = tasks.ArtifactTypeData()
artifact_type_data.data_hash = current_sha2
artifact_type_data.content_type = "text/csv"
artifact_type_data.preview = str(pd_artifact.__repr__(
)) + '\n\n' + self._get_statistics({name: pd_artifact})
artifact.type_data = artifact_type_data
artifact.uri = uri
artifact.content_size = file_size
artifact.hash = file_sha2
artifact.timestamp = int(time())
artifact.display_data = [(str(k), str(v)) for k, v in pd_metadata.items()] if pd_metadata else None
self._task.set_artifacts(self._task_artifact_list)
def _upload_local_file(
self, local_file, name, delete_after_upload=False, override_filename=None, override_filename_ext=None,
wait_on_upload=False
):
# type: (str, str, bool, Optional[str], Optional[str], bool) -> str
"""
Upload local file and return uri of the uploaded file (uploading in the background)
"""
from trains.storage import StorageManager
upload_uri = self._task.output_uri or self._task.get_logger().get_default_upload_destination()
if not isinstance(local_file, Path):
local_file = Path(local_file)
ev = UploadEvent(metric='artifacts', variant=name,
image_data=None, upload_uri=upload_uri,
local_image_path=local_file.as_posix(),
delete_after_upload=delete_after_upload,
override_filename=override_filename,
override_filename_ext=override_filename_ext,
override_storage_key_prefix=self._get_storage_uri_prefix())
_, uri = ev.get_target_full_upload_uri(upload_uri, quote_uri=False)
# send for upload
# noinspection PyProtectedMember
if wait_on_upload:
StorageManager.upload_file(local_file.as_posix(), uri)
if delete_after_upload:
try:
os.unlink(local_file.as_posix())
except OSError:
LoggerRoot.get_base_logger().warning('Failed removing temporary {}'.format(local_file))
else:
self._task._reporter._report(ev)
_, quoted_uri = ev.get_target_full_upload_uri(upload_uri)
return quoted_uri
def _get_statistics(self, artifacts_dict=None):
# type: (Optional[Dict[str, Artifact]]) -> str
summary = ''
artifacts_dict = artifacts_dict or self._artifacts_container
thread_pool = ThreadPool()
try:
# build hash row sets
artifacts_summary = []
for a_name, a_df in artifacts_dict.items():
hash_cols = self._artifacts_container.get_hash_columns(a_name)
if not pd or not isinstance(a_df, pd.DataFrame):
continue
if hash_cols is True:
hash_col_drop = []
else:
hash_cols = set(hash_cols)
missing_cols = hash_cols.difference(a_df.columns)
if missing_cols == hash_cols:
LoggerRoot.get_base_logger().warning(
'Uniqueness columns {} not found in artifact {}. '
'Skipping uniqueness check for artifact.'.format(list(missing_cols), a_name)
)
continue
elif missing_cols:
# missing_cols must be a subset of hash_cols
hash_cols.difference_update(missing_cols)
LoggerRoot.get_base_logger().warning(
'Uniqueness columns {} not found in artifact {}. Using {}.'.format(
list(missing_cols), a_name, list(hash_cols)
)
)
hash_col_drop = [col for col in a_df.columns if col not in hash_cols]
a_unique_hash = set()
def hash_row(r):
a_unique_hash.add(hash(bytes(r)))
a_shape = a_df.shape
# parallelize
a_hash_cols = a_df.drop(columns=hash_col_drop)
thread_pool.map(hash_row, a_hash_cols.values)
# add result
artifacts_summary.append((a_name, a_shape, a_unique_hash,))
# build intersection summary
for i, (name, shape, unique_hash) in enumerate(artifacts_summary):
summary += '[{name}]: shape={shape}, {unique} unique rows, {percentage:.1f}% uniqueness\n'.format(
name=name, shape=shape, unique=len(unique_hash),
percentage=100 * len(unique_hash) / float(shape[0]))
for name2, shape2, unique_hash2 in artifacts_summary[i + 1:]:
intersection = len(unique_hash & unique_hash2)
summary += '\tIntersection with [{name2}] {intersection} rows: {percentage:.1f}%\n'.format(
name2=name2, intersection=intersection,
percentage=100 * intersection / float(len(unique_hash2)))
except Exception as e:
LoggerRoot.get_base_logger().warning(str(e))
finally:
thread_pool.close()
thread_pool.terminate()
return summary
def _get_temp_folder(self, force_new=False):
# type: (bool) -> str
if force_new or not self._temp_folder:
new_temp = mkdtemp(prefix='artifacts_')
self._temp_folder.append(new_temp)
return new_temp
return self._temp_folder[0]
def _get_storage_uri_prefix(self):
# type: () -> str
if not self._storage_prefix:
# noinspection PyProtectedMember
self._storage_prefix = self._task._get_output_destination_suffix()
return self._storage_prefix