clearml/clearml/binding/frameworks/xgboost_bind.py
J Alexander fd83f8c2cb
Fix xgb train overload (#456)
Co-authored-by: Johnathan Alexander <jalexander86@gatech.edu>
2021-09-22 10:34:05 +03:00

178 lines
6.2 KiB
Python

import sys
import six
from pathlib2 import Path
from ..frameworks.base_bind import PatchBaseModelIO
from ..frameworks import _patched_call, WeightsFileHandler, _Empty
from ..import_bind import PostImportHookPatching
from ...config import running_remotely
from ...model import Framework
class PatchXGBoostModelIO(PatchBaseModelIO):
__main_task = None
__patched = None
__callback_cls = None
@staticmethod
def update_current_task(task, **kwargs):
PatchXGBoostModelIO.__main_task = task
PatchXGBoostModelIO._patch_model_io()
PostImportHookPatching.add_on_import('xgboost', PatchXGBoostModelIO._patch_model_io)
@staticmethod
def _patch_model_io():
if PatchXGBoostModelIO.__patched:
return
if 'xgboost' not in sys.modules:
return
PatchXGBoostModelIO.__patched = True
# noinspection PyBroadException
try:
import xgboost as xgb # noqa
bst = xgb.Booster
bst.save_model = _patched_call(bst.save_model, PatchXGBoostModelIO._save)
bst.load_model = _patched_call(bst.load_model, PatchXGBoostModelIO._load)
# noinspection PyBroadException
try:
from xgboost.callback import TrainingCallback # noqa
PatchXGBoostModelIO.__callback_cls = PatchXGBoostModelIO._generate_training_callback_class()
xgb.train = _patched_call(xgb.train, PatchXGBoostModelIO._train)
xgb.training.train = _patched_call(xgb.training.train, PatchXGBoostModelIO._train)
xgb.sklearn.train = _patched_call(xgb.sklearn.train, PatchXGBoostModelIO._train)
except ImportError:
pass
except Exception:
pass
except ImportError:
pass
except Exception:
pass
@staticmethod
def _save(original_fn, obj, f, *args, **kwargs):
ret = original_fn(obj, f, *args, **kwargs)
if not PatchXGBoostModelIO.__main_task:
return ret
if isinstance(f, six.string_types):
filename = f
elif hasattr(f, 'name'):
filename = f.name
# noinspection PyBroadException
try:
f.flush()
except Exception:
pass
else:
filename = None
# give the model a descriptive name based on the file name
# noinspection PyBroadException
try:
model_name = Path(filename).stem
except Exception:
model_name = None
WeightsFileHandler.create_output_model(obj, filename, Framework.xgboost, PatchXGBoostModelIO.__main_task,
singlefile=True, model_name=model_name)
return ret
@staticmethod
def _load(original_fn, f, *args, **kwargs):
if isinstance(f, six.string_types):
filename = f
elif hasattr(f, 'name'):
filename = f.name
elif len(args) == 1 and isinstance(args[0], six.string_types):
filename = args[0]
else:
filename = None
if not PatchXGBoostModelIO.__main_task:
return original_fn(f, *args, **kwargs)
# register input model
empty = _Empty()
# Hack: disabled
if False and running_remotely():
filename = WeightsFileHandler.restore_weights_file(empty, filename, Framework.xgboost,
PatchXGBoostModelIO.__main_task)
model = original_fn(filename or f, *args, **kwargs)
else:
# try to load model before registering, in case we fail
model = original_fn(f, *args, **kwargs)
WeightsFileHandler.restore_weights_file(empty, filename, Framework.xgboost,
PatchXGBoostModelIO.__main_task)
if empty.trains_in_model:
# noinspection PyBroadException
try:
model.trains_in_model = empty.trains_in_model
except Exception:
pass
return model
@staticmethod
def _train(original_fn, *args, **kwargs):
if PatchXGBoostModelIO.__callback_cls:
callbacks = kwargs.get('callbacks') or []
kwargs['callbacks'] = callbacks + [
PatchXGBoostModelIO.__callback_cls(task=PatchXGBoostModelIO.__main_task)
]
return original_fn(*args, **kwargs)
@classmethod
def _generate_training_callback_class(cls):
try:
from xgboost.callback import TrainingCallback # noqa
except ImportError:
return None
class ClearMLCallback(TrainingCallback):
"""
Log evaluation result at each iteration.
"""
def __init__(self, task, period=1):
self.period = period
assert period > 0
self._last_eval = None
self._last_eval_epoch = None
self._logger = task.get_logger()
super(ClearMLCallback, self).__init__()
def after_iteration(self, model, epoch, evals_log):
""" Run after each iteration. Return True when training should stop. """
if not evals_log:
return False
if not (self.period == 1 or (epoch % self.period) == 0):
self._last_eval = evals_log
self._last_eval_epoch = epoch
return False
self._report_eval_log(epoch, evals_log)
self._last_eval = None
self._last_eval_epoch = None
return False
def after_training(self, model):
""" Run after training is finished. """
if self._last_eval:
self._report_eval_log(self._last_eval_epoch, self._last_eval)
return model
def _report_eval_log(self, epoch, eval_log):
for data, metric in eval_log.items():
for metric_name, log in metric.items():
value = log[-1]
self._logger.report_scalar(title=data, series=metric_name, value=value, iteration=epoch)
return ClearMLCallback