clearml/examples/hyperdatasets/data-registration/register_dataset_masks.py
erezalg f6b9efe54e
Add hyperdataset examples (#823)
* Add hyperdataset examples

Co-authored-by: Erez Schnaider <erez@clear.ml>
2022-11-20 16:28:42 +02:00

137 lines
5.3 KiB
Python

"""
How to register data with ROIs and metadata from a json file.
Create a list of ROI's for each image in the metadata format required by a frame.
Notice: This is a custom parser for a specific dataset. Each dataset requires a different parser.
You can run this example from this dir with:
python registration_with_roi_and_meta.py
--path data/sample_ds --ext jpg --ds_name my_uploaded_dataset --version_name my_version
"""
import glob
import json
import os
from argparse import ArgumentParser
from allegroai import DatasetVersion, FrameGroup, SingleFrame, Task
from clearml import StorageManager
def get_frames_with_masks(data_path, ext="png", mask_ext="_mask.png"):
frame_groups = {}
# Go over each jpg file in base path
for file in glob.glob(os.path.join(data_path, "*.{}".format(ext))):
full_path = os.path.abspath(file)
# if this is a mask file skip it, we will manually add it later to the images it belongs to
if full_path.endswith(mask_ext):
continue
# let's check if we have a mask file
full_path_mask = full_path.replace(f".{ext}", mask_ext)
if not os.path.exists(full_path_mask):
# we do not have a mask file, so let's skip this one
continue
# now we need to add the actual
print("Getting files from: " + full_path)
# let's split the file name based on '_' and use the first part as ID
file_parts_key = os.path.split(full_path)[-1].split("_")
# this is used just so we can easily collect (group) the frames together
frame_group_id = file_parts_key[0]
# find the correct FrameGroup based on the filename
if frame_group_id not in frame_groups:
# this is acts like a Dict and the keys are string and the values are SingleFrames
frame_group = FrameGroup()
frame_groups[frame_group_id] = frame_group
else:
frame_group = frame_groups[frame_group_id]
# add the frame and the mask to the frame group,
# we have to give it a name (inside the FrameGroup) so we use
source_id = file_parts_key[1]
frame_group[source_id] = SingleFrame(source=full_path, mask_source=full_path_mask)
# return a list of FrameGroups
return list(frame_groups.values())
def read_mask_class_values(local_dataset_path):
json_file_path = os.path.join(local_dataset_path, "_mask_legend.json")
json_file = open(json_file_path, "r")
data = json.load(json_file)
json_file.close()
# now we need to convert it to pixel RGB value mapping to classes
label_mapping = {tuple(value): [key] for key, value in data.items()}
return label_mapping
def create_version_with_frames(new_frames, masks_lookup, ds_name, ver_name, local_dataset_path):
# Get the dataset (it will create a new one if we don't have it)
ds = DatasetVersion.create_new_dataset(dataset_name=ds_name)
# create a specific dataset version, or just use the latest version
dv = ds.create_version(version_name=ver_name) if ver_name else \
DatasetVersion.get_current(dataset_name=ds_name)
dv.set_masks_labels(masks_lookup)
# Add and upload frames to created version
dv.add_frames(
new_frames,
# where to upload the files, we will use for example the default one, you can also s3://bucket/ etc
auto_upload_destination=Task.current_task().get_output_destination(),
# The local root, this will make sure we keep the same
# files structure in the upload destination as we have on the local machine
local_dataset_root_path=local_dataset_path
)
dv.commit_version()
if __name__ == '__main__':
parser = ArgumentParser(description='Register allegro dataset with frame group and masks')
parser.add_argument(
'--ext', type=str, help='Files extension to upload from the dir. Default "png"',
default="png")
parser.add_argument(
'--mask-ext', type=str, help='Files extension to upload from the dir. Default "_mask.png"',
default="_mask.png")
parser.add_argument(
'--ds_name', type=str, help='Dataset name for the data',
default="sample-dataset-masks")
parser.add_argument(
'--version_name', type=str, help='Version name for the data (default is current version)',
default="initial")
args = parser.parse_args()
example_dataset_path = 's3://clearml-public/datasets/hyperdataset_example/ds_with_masks'
local_img_path = StorageManager.download_folder(example_dataset_path)
# this folder contains the images and json files for the data
base_path = os.path.abspath('{}/datasets/hyperdataset_example/ds_with_masks'.format(local_img_path))
dataset_name = args.ds_name
version_name = args.version_name
task = Task.init(
project_name="uploading_datasets", task_name="upload_sample_dataset_with_masks",
task_type=Task.TaskTypes.data_processing,
# This will make sure we have a valid output destination for our local files to be uploaded to
output_uri=True
)
frames = get_frames_with_masks(data_path=base_path, ext=args.ext, mask_ext=args.mask_ext)
mask_class_lookup = read_mask_class_values(base_path)
create_version_with_frames(frames, mask_class_lookup, dataset_name, version_name, base_path)
print("We are done :)")