clearml/trains/automation/aws_auto_scaler.py

190 lines
7.8 KiB
Python

import base64
from typing import Union
import attr
from .auto_scaler import AutoScaler
from .. import Task
try:
# noinspection PyPackageRequirements
import boto3
Task.add_requirements('boto3')
except ImportError:
raise ValueError("AwsAutoScaler requires 'boto3' package, it was not found\n"
"install with: pip install boto3")
class AwsAutoScaler(AutoScaler):
@attr.s
class Settings(AutoScaler.Settings):
workers_prefix = attr.ib(default="dynamic_aws")
cloud_provider = attr.ib(default="AWS")
def __init__(self, settings, configuration):
# type: (Union[dict, AwsAutoScaler.Settings], Union[dict, AwsAutoScaler.Configuration]) -> None
super(AwsAutoScaler, self).__init__(settings, configuration)
def spin_up_worker(self, resource, worker_id_prefix, queue_name):
"""
Creates a new worker for trains.
First, create an instance in the cloud and install some required packages.
Then, define trains-agent environment variables and run trains-agent for the specified queue.
NOTE: - Will wait until instance is running
- This implementation assumes the instance image already has docker installed
:param str resource: resource name, as defined in BUDGET and QUEUES.
:param str worker_id_prefix: worker name prefix
:param str queue_name: trains queue to listen to
"""
resource_conf = self.resource_configurations[resource]
# Add worker type and AWS instance type to the worker name.
worker_id = "{worker_id_prefix}:{worker_type}:{instance_type}".format(
worker_id_prefix=worker_id_prefix,
worker_type=resource,
instance_type=resource_conf["instance_type"],
)
# user_data script will automatically run when the instance is started. it will install the required packages
# for trains-agent configure it using environment variables and run trains-agent on the required queue
user_data = """#!/bin/bash
sudo apt-get update
sudo apt-get install -y python3-dev
sudo apt-get install -y python3-pip
sudo apt-get install -y gcc
sudo apt-get install -y git
sudo apt-get install -y build-essential
python3 -m pip install -U pip
python3 -m pip install virtualenv
python3 -m virtualenv trains_agent_venv
source trains_agent_venv/bin/activate
python -m pip install trains-agent
echo 'agent.git_user=\"{git_user}\"' >> /root/trains.conf
echo 'agent.git_pass=\"{git_pass}\"' >> /root/trains.conf
echo "{trains_conf}" >> /root/trains.conf
export TRAINS_API_HOST={api_server}
export TRAINS_WEB_HOST={web_server}
export TRAINS_FILES_HOST={files_server}
export DYNAMIC_INSTANCE_ID=`curl http://169.254.169.254/latest/meta-data/instance-id`
export TRAINS_WORKER_ID={worker_id}:$DYNAMIC_INSTANCE_ID
export TRAINS_API_ACCESS_KEY='{access_key}'
export TRAINS_API_SECRET_KEY='{secret_key}'
{bash_script}
source ~/.bashrc
python -m trains_agent --config-file '/root/trains.conf' daemon --queue '{queue}' {docker}
shutdown
""".format(
api_server=self.api_server,
web_server=self.web_server,
files_server=self.files_server,
worker_id=worker_id,
access_key=self.access_key,
secret_key=self.secret_key,
queue=queue_name,
git_user=self.git_user or "",
git_pass=self.git_pass or "",
trains_conf='\\"'.join(self.extra_trains_conf.split('"')),
bash_script=self.extra_vm_bash_script,
docker="--docker '{}'".format(self.default_docker_image)
if self.default_docker_image
else "",
)
ec2 = boto3.client(
"ec2",
aws_access_key_id=self.cloud_credentials_key or None,
aws_secret_access_key=self.cloud_credentials_secret or None,
region_name=self.cloud_credentials_region,
)
if resource_conf["is_spot"]:
# Create a request for a spot instance in AWS
encoded_user_data = base64.b64encode(user_data.encode("ascii")).decode(
"ascii"
)
instances = ec2.request_spot_instances(
LaunchSpecification={
"ImageId": resource_conf["ami_id"],
"InstanceType": resource_conf["instance_type"],
"KeyName": resource_conf["key_name"],
"SecurityGroupIds": resource_conf["security_group_ids"],
"Placement": {
"AvailabilityZone": resource_conf["availability_zone"]
},
"UserData": encoded_user_data,
"BlockDeviceMappings": [
{
"DeviceName": resource_conf["ebs_device_name"],
"Ebs": {
"VolumeSize": resource_conf["ebs_volume_size"],
"VolumeType": resource_conf["ebs_volume_type"],
},
}
],
}
)
# Wait until spot request is fulfilled
request_id = instances["SpotInstanceRequests"][0]["SpotInstanceRequestId"]
waiter = ec2.get_waiter("spot_instance_request_fulfilled")
waiter.wait(SpotInstanceRequestIds=[request_id])
# Get the instance object for later use
response = ec2.describe_spot_instance_requests(
SpotInstanceRequestIds=[request_id]
)
instance_id = response["SpotInstanceRequests"][0]["InstanceId"]
else:
# Create a new EC2 instance
instances = ec2.run_instances(
ImageId=resource_conf["ami_id"],
MinCount=1,
MaxCount=1,
InstanceType=resource_conf["instance_type"],
KeyName=resource_conf["key_name"],
SecurityGroupIds=resource_conf["security_group_ids"],
UserData=user_data,
InstanceInitiatedShutdownBehavior="terminate",
BlockDeviceMappings=[
{
"DeviceName": resource_conf["ebs_device_name"],
"Ebs": {
"VolumeSize": resource_conf["ebs_volume_size"],
"VolumeType": resource_conf["ebs_volume_type"],
},
}
],
)
# Get the instance object for later use
instance_id = instances["Instances"][0]["InstanceId"]
instance = boto3.resource(
"ec2",
aws_access_key_id=self.cloud_credentials_key or None,
aws_secret_access_key=self.cloud_credentials_secret or None,
region_name=self.cloud_credentials_region,
).Instance(instance_id)
# Wait until instance is in running state
instance.wait_until_running()
# Cloud-specific implementation (currently, only AWS EC2 is supported)
def spin_down_worker(self, instance_id):
"""
Destroys the cloud instance.
:param instance_id: Cloud instance ID to be destroyed (currently, only AWS EC2 is supported)
:type instance_id: str
"""
try:
boto3.resource(
"ec2",
aws_access_key_id=self.cloud_credentials_key or None,
aws_secret_access_key=self.cloud_credentials_secret or None,
region_name=self.cloud_credentials_region,
).instances.filter(InstanceIds=[instance_id]).terminate()
except Exception as ex:
raise ex