mirror of
https://github.com/clearml/clearml
synced 2025-02-01 01:26:49 +00:00
1247 lines
52 KiB
Python
1247 lines
52 KiB
Python
import hashlib
|
|
import json
|
|
from copy import copy
|
|
from datetime import datetime
|
|
from itertools import product
|
|
from logging import getLogger
|
|
from threading import Thread, Event
|
|
from time import time
|
|
from typing import Union, Any, Sequence, Optional, Mapping, Callable
|
|
|
|
from .job import TrainsJob
|
|
from .parameters import Parameter
|
|
from ..task import Task
|
|
|
|
logger = getLogger('trains.automation.optimization')
|
|
|
|
|
|
try:
|
|
import pandas as pd
|
|
Task.add_requirements('pandas')
|
|
except ImportError:
|
|
pd = None
|
|
logger.warning('Pandas is not installed, summary table reporting will be skipped.')
|
|
|
|
|
|
class Objective(object):
|
|
"""
|
|
Objective class to maximize/minimize over all experiments
|
|
Class will sample specific scalar from all experiments, and maximize/minimize
|
|
over single scalar (i.e. title and series combination)
|
|
|
|
Used by the SearchStrategy/HyperParameterOptimizer in the strategy search algorithm
|
|
"""
|
|
|
|
def __init__(self, title, series, order='max', extremum=False):
|
|
# type: (str, str, str, bool) -> ()
|
|
"""
|
|
Construct objective object that will return the scalar value for a specific task ID
|
|
|
|
:param str title: Scalar graph title to sample from
|
|
:param str series: Scalar series title to sample from
|
|
:param str order: Either "max" or "min" , setting for maximizing/minimizing the objective scalar value
|
|
:param bool extremum: Default False, which will bring the last value reported for a specific Task
|
|
If True, return the global minimum / maximum reported metric value
|
|
"""
|
|
self.title = title
|
|
self.series = series
|
|
assert order in ('min', 'max',)
|
|
# normalize value so we always look for the highest objective value
|
|
self.sign = -1 if (isinstance(order, str) and order.lower().strip() == 'min') else +1
|
|
self._metric = None
|
|
self.extremum = extremum
|
|
|
|
def get_objective(self, task_id):
|
|
# type: (Union[str, Task, TrainsJob]) -> Optional[float]
|
|
"""
|
|
Return a specific task scalar value based on the objective settings (title/series)
|
|
|
|
:param str task_id: Task id to retrieve scalar from (or TrainsJob object)
|
|
:return float: scalar value
|
|
"""
|
|
# create self._metric
|
|
self._get_last_metrics_encode_field()
|
|
|
|
if isinstance(task_id, Task):
|
|
task_id = task_id.id
|
|
elif isinstance(task_id, TrainsJob):
|
|
task_id = task_id.task_id()
|
|
|
|
# noinspection PyBroadException, Py
|
|
try:
|
|
# noinspection PyProtectedMember
|
|
task = Task._query_tasks(
|
|
task_ids=[task_id], only_fields=['last_metrics.{}.{}'.format(self._metric[0], self._metric[1])])[0]
|
|
except Exception:
|
|
return None
|
|
|
|
metrics = task.last_metrics
|
|
# noinspection PyBroadException
|
|
try:
|
|
values = metrics[self._metric[0]][self._metric[1]]
|
|
if not self.extremum:
|
|
return values['value']
|
|
|
|
return values['min_value'] if self.sign < 0 else values['max_value']
|
|
except Exception:
|
|
return None
|
|
|
|
def get_current_raw_objective(self, task):
|
|
# type: (Union[TrainsJob, Task]) -> (int, float)
|
|
"""
|
|
Return the current raw value (without sign normalization) of the objective
|
|
|
|
:param str task: Task or Job to retrieve scalar from (or TrainsJob object)
|
|
:return tuple: (iteration, value) if metric does not exist return None
|
|
"""
|
|
|
|
if not isinstance(task, Task):
|
|
if hasattr(task, 'task'):
|
|
task = task.task
|
|
if not isinstance(task, Task):
|
|
task = Task.get_task(task_id=str(task))
|
|
if not task:
|
|
raise ValueError("Task object could not be found")
|
|
|
|
# todo: replace with more efficient code
|
|
scalars = task.get_reported_scalars()
|
|
|
|
# noinspection PyBroadException
|
|
try:
|
|
return scalars[self.title][self.series]['x'][-1], scalars[self.title][self.series]['y'][-1]
|
|
except Exception:
|
|
return None
|
|
|
|
def get_objective_sign(self):
|
|
# type: () -> float
|
|
"""
|
|
Return the sign of the objective (i.e. +1 if maximizing, and -1 if minimizing)
|
|
|
|
:return float: objective function sign
|
|
"""
|
|
return self.sign
|
|
|
|
def get_objective_metric(self):
|
|
# type: () -> (str, str)
|
|
"""
|
|
Return the metric title, series pair of the objective
|
|
|
|
:return (str, str): return (title, series)
|
|
"""
|
|
return self.title, self.series
|
|
|
|
def get_normalized_objective(self, task_id):
|
|
# type: (Union[str, Task, TrainsJob]) -> Optional[float]
|
|
"""
|
|
Return a normalized task scalar value based on the objective settings (title/series)
|
|
I.e. objective is always to maximize the returned value
|
|
|
|
:param str task_id: Task id to retrieve scalar from
|
|
:return float: normalized scalar value
|
|
"""
|
|
objective = self.get_objective(task_id=task_id)
|
|
if objective is None:
|
|
return None
|
|
# normalize value so we always look for the highest objective value
|
|
return self.sign * objective
|
|
|
|
def _get_last_metrics_encode_field(self):
|
|
# type: () -> str
|
|
"""
|
|
Return encoded representation of title/series metric
|
|
|
|
:return str: string representing the objective title/series
|
|
"""
|
|
if not self._metric:
|
|
title = hashlib.md5(str(self.title).encode('utf-8')).hexdigest()
|
|
series = hashlib.md5(str(self.series).encode('utf-8')).hexdigest()
|
|
self._metric = title, series
|
|
return '{}last_metrics.{}.{}.{}'.format(
|
|
'-' if self.sign < 0 else '', self._metric[0], self._metric[1],
|
|
('min_value' if self.sign < 0 else 'max_value') if self.extremum else 'value')
|
|
|
|
|
|
class Budget(object):
|
|
class Field(object):
|
|
def __init__(self, limit=None):
|
|
# type: (Optional[float]) -> ()
|
|
self.limit = limit
|
|
self.current = {}
|
|
|
|
def update(self, uid, value):
|
|
# type: (Union[str, int], float) -> ()
|
|
if value is not None:
|
|
try:
|
|
self.current[uid] = float(value)
|
|
except (TypeError, ValueError):
|
|
pass
|
|
|
|
@property
|
|
def used(self):
|
|
# type: () -> (Optional[float])
|
|
if self.limit is None or not self.current:
|
|
return None
|
|
return sum(self.current.values())/float(self.limit)
|
|
|
|
def __init__(self, jobs_limit, iterations_limit, compute_time_limit):
|
|
# type: (Optional[int], Optional[int], Optional[float]) -> ()
|
|
self.jobs = self.Field(jobs_limit)
|
|
self.iterations = self.Field(iterations_limit)
|
|
self.compute_time = self.Field(compute_time_limit)
|
|
|
|
def to_dict(self):
|
|
# type: () -> (Mapping[str, Mapping[str, float]])
|
|
|
|
# returned dict is Mapping[Union['jobs', 'iterations', 'compute_time'], Mapping[Union['limit', 'used'], float]]
|
|
current_budget = {}
|
|
jobs = self.jobs.used
|
|
if jobs:
|
|
current_budget['jobs'] = {'limit': self.jobs.limit, 'used': jobs}
|
|
iterations = self.iterations.used
|
|
if iterations:
|
|
current_budget['iterations'] = {'limit': self.iterations.limit, 'used': iterations}
|
|
compute_time = self.compute_time.used
|
|
if compute_time:
|
|
current_budget['compute_time'] = {'limit': self.compute_time.limit, 'used': compute_time}
|
|
return current_budget
|
|
|
|
|
|
class SearchStrategy(object):
|
|
"""
|
|
Base Search strategy class, inherit to implement your custom strategy
|
|
"""
|
|
_tag = 'optimization'
|
|
_job_class = TrainsJob # type: TrainsJob
|
|
|
|
def __init__(
|
|
self,
|
|
base_task_id, # type: str
|
|
hyper_parameters, # type: Sequence[Parameter]
|
|
objective_metric, # type: Objective
|
|
execution_queue, # type: str
|
|
num_concurrent_workers, # type: int
|
|
pool_period_min=2., # type: float
|
|
time_limit_per_job=None, # type: Optional[float]
|
|
max_iteration_per_job=None, # type: Optional[int]
|
|
total_max_jobs=None, # type: Optional[int]
|
|
**_ # type: Any
|
|
):
|
|
# type: (...) -> ()
|
|
"""
|
|
Initialize a search strategy optimizer
|
|
|
|
:param str base_task_id: Task ID (str)
|
|
:param list hyper_parameters: list of Parameter objects to optimize over
|
|
:param Objective objective_metric: Objective metric to maximize / minimize
|
|
:param str execution_queue: execution queue to use for launching Tasks (experiments).
|
|
:param int num_concurrent_workers: Limit number of concurrent running machines
|
|
:param float pool_period_min: time in minutes between two consecutive pools
|
|
:param float time_limit_per_job: Optional, maximum execution time per single job in minutes,
|
|
when time limit is exceeded job is aborted
|
|
:param int max_iteration_per_job: Optional, maximum iterations (of the objective metric)
|
|
per single job, when exceeded job is aborted.
|
|
:param int total_max_jobs: total maximum jobs for the optimization process. Default None, unlimited
|
|
"""
|
|
super(SearchStrategy, self).__init__()
|
|
self._base_task_id = base_task_id
|
|
self._hyper_parameters = hyper_parameters
|
|
self._objective_metric = objective_metric
|
|
self._execution_queue = execution_queue
|
|
self._num_concurrent_workers = num_concurrent_workers
|
|
self.pool_period_minutes = pool_period_min
|
|
self.time_limit_per_job = time_limit_per_job
|
|
self.max_iteration_per_job = max_iteration_per_job
|
|
self.total_max_jobs = total_max_jobs
|
|
self._stop_event = Event()
|
|
self._current_jobs = []
|
|
self._pending_jobs = []
|
|
self._num_jobs = 0
|
|
self._job_parent_id = None
|
|
self._created_jobs_ids = {}
|
|
self._naming_function = None
|
|
self._job_project = {}
|
|
self.budget = Budget(
|
|
jobs_limit=self.total_max_jobs,
|
|
compute_time_limit=self.total_max_jobs * self.time_limit_per_job if
|
|
self.time_limit_per_job and self.total_max_jobs else None,
|
|
iterations_limit=self.total_max_jobs * self.max_iteration_per_job if
|
|
self.max_iteration_per_job and self.total_max_jobs else None
|
|
)
|
|
self._validate_base_task()
|
|
|
|
def start(self):
|
|
# type: () -> ()
|
|
"""
|
|
Start the Optimizer controller function loop()
|
|
If the calling process is stopped, the controller will stop as well.
|
|
|
|
Notice: This function returns only after optimization is completed! or stop() was called.
|
|
"""
|
|
counter = 0
|
|
while True:
|
|
logger.debug('optimization loop #{}'.format(counter))
|
|
if not self.process_step():
|
|
break
|
|
if self._stop_event.wait(timeout=self.pool_period_minutes * 60.):
|
|
break
|
|
counter += 1
|
|
|
|
def stop(self):
|
|
# type: () -> ()
|
|
"""
|
|
Stop the current running optimization loop,
|
|
Called from a different thread than the start()
|
|
"""
|
|
self._stop_event.set()
|
|
|
|
def process_step(self):
|
|
# type: () -> bool
|
|
"""
|
|
Abstract helper function, not a must to implement, default use in start default implementation
|
|
Main optimization loop, called from the daemon thread created by start()
|
|
- Call monitor job on every TrainsJob in jobs:
|
|
- Check the performance or elapsed time, then decide if to kill the jobs
|
|
- Call create_job:
|
|
- Check if we have spare jpb slots
|
|
- If yes: call create a new job based on previous tested experiments
|
|
|
|
:return bool: True to continue the optimization and False to immediately stop
|
|
"""
|
|
updated_jobs = []
|
|
for job in self._current_jobs:
|
|
if self.monitor_job(job):
|
|
updated_jobs.append(job)
|
|
|
|
self._current_jobs = updated_jobs
|
|
|
|
pending_jobs = []
|
|
for job in self._pending_jobs:
|
|
if job.is_pending():
|
|
pending_jobs.append(job)
|
|
else:
|
|
self.budget.jobs.update(job.task_id(), 1)
|
|
|
|
self._pending_jobs = pending_jobs
|
|
|
|
free_workers = self._num_concurrent_workers - len(self._current_jobs)
|
|
|
|
# do not create more jobs if we hit the limit
|
|
if self.total_max_jobs and self._num_jobs >= self.total_max_jobs:
|
|
return bool(self._current_jobs)
|
|
|
|
# see how many free slots we have and create job
|
|
for i in range(max(0, free_workers)):
|
|
new_job = self.create_job()
|
|
if not new_job:
|
|
break
|
|
self._num_jobs += 1
|
|
new_job.launch(self._execution_queue)
|
|
self._current_jobs.append(new_job)
|
|
self._pending_jobs.append(new_job)
|
|
|
|
return bool(self._current_jobs)
|
|
|
|
def create_job(self):
|
|
# type: () -> Optional[TrainsJob]
|
|
"""
|
|
Abstract helper function, not a must to implement, default use in process_step default implementation
|
|
Create a new job if needed. return the newly created job.
|
|
If no job needs to be created, return None
|
|
|
|
:return TrainsJob: newly created TrainsJob object or None if no TrainsJob created
|
|
"""
|
|
return None
|
|
|
|
def monitor_job(self, job):
|
|
# type: (TrainsJob) -> bool
|
|
"""
|
|
Helper function, not a must to implement, default use in process_step default implementation
|
|
Check if the job needs to be aborted or already completed
|
|
if return False, the job was aborted / completed, and should be taken off the current job list
|
|
|
|
If there is a budget limitation,
|
|
this call should update self.budget.compute_time.update() / self.budget.iterations.update()
|
|
|
|
:param TrainsJob job: a TrainsJob object to monitor
|
|
:return bool: If False, job is no longer relevant
|
|
"""
|
|
abort_job = False
|
|
|
|
if self.time_limit_per_job:
|
|
elapsed = job.elapsed() / 60.
|
|
if elapsed > 0:
|
|
self.budget.compute_time.update(job.task_id(), elapsed)
|
|
if elapsed > self.time_limit_per_job:
|
|
abort_job = True
|
|
|
|
if self.max_iteration_per_job:
|
|
iterations = self._get_job_iterations(job)
|
|
if iterations > 0:
|
|
self.budget.iterations.update(job.task_id(), iterations)
|
|
if iterations > self.max_iteration_per_job:
|
|
abort_job = True
|
|
|
|
if abort_job:
|
|
job.abort()
|
|
return False
|
|
|
|
return not job.is_stopped()
|
|
|
|
def get_running_jobs(self):
|
|
# type: () -> Sequence[TrainsJob]
|
|
"""
|
|
Return the current running TrainsJobs
|
|
|
|
:return list: list of TrainsJob objects
|
|
"""
|
|
return self._current_jobs
|
|
|
|
def get_created_jobs_ids(self):
|
|
# type: () -> Mapping[str, dict]
|
|
"""
|
|
Return a task ids dict created ny this optimizer until now, including completed and running jobs.
|
|
The values of the returned dict are the parameters used in the specific job
|
|
|
|
:return dict: dict of task ids (str) as keys, and their parameters dict as value
|
|
"""
|
|
return self._created_jobs_ids
|
|
|
|
def get_top_experiments(self, top_k):
|
|
# type: (int) -> Sequence[Task]
|
|
"""
|
|
Return a list of Tasks of the top performing experiments, based on the controller Objective object
|
|
|
|
:param int top_k: Number of Tasks (experiments) to return
|
|
:return list: List of Task objects, ordered by performance, where index 0 is the best performing Task.
|
|
"""
|
|
# noinspection PyProtectedMember
|
|
top_tasks = self._get_child_tasks(
|
|
parent_task_id=self._job_parent_id or self._base_task_id,
|
|
order_by=self._objective_metric._get_last_metrics_encode_field(),
|
|
additional_filters={'page_size': int(top_k), 'page': 0})
|
|
return top_tasks
|
|
|
|
def get_objective_metric(self):
|
|
# type: () -> (str, str)
|
|
"""
|
|
Return the metric title, series pair of the objective
|
|
|
|
:return (str, str): return (title, series)
|
|
"""
|
|
return self._objective_metric.get_objective_metric()
|
|
|
|
def helper_create_job(
|
|
self,
|
|
base_task_id, # type: str
|
|
parameter_override=None, # type: Optional[Mapping[str, str]]
|
|
task_overrides=None, # type: Optional[Mapping[str, str]]
|
|
tags=None, # type: Optional[Sequence[str]]
|
|
parent=None, # type: Optional[str]
|
|
**kwargs # type: Any
|
|
):
|
|
# type: (...) -> TrainsJob
|
|
"""
|
|
Create a Job using the specified arguments, TrainsJob for details
|
|
|
|
:return TrainsJob: Returns a newly created Job instance
|
|
"""
|
|
if parameter_override:
|
|
param_str = ['{}={}'.format(k, parameter_override[k]) for k in sorted(parameter_override.keys())]
|
|
if self._naming_function:
|
|
name = self._naming_function(self._base_task_name, parameter_override)
|
|
elif self._naming_function is False:
|
|
name = None
|
|
else:
|
|
name = '{}: {}'.format(self._base_task_name, ' '.join(param_str))
|
|
comment = '\n'.join(param_str)
|
|
else:
|
|
name = None
|
|
comment = None
|
|
tags = (tags or []) + [self._tag, 'opt' + (': {}'.format(self._job_parent_id) if self._job_parent_id else '')]
|
|
new_job = self._job_class(
|
|
base_task_id=base_task_id, parameter_override=parameter_override,
|
|
task_overrides=task_overrides, tags=tags, parent=parent or self._job_parent_id,
|
|
name=name, comment=comment, project=self._get_task_project(parent or self._job_parent_id), **kwargs)
|
|
self._created_jobs_ids[new_job.task_id()] = parameter_override
|
|
logger.info('Creating new Task: {}'.format(parameter_override))
|
|
return new_job
|
|
|
|
def set_job_class(self, job_class):
|
|
# type: (TrainsJob) -> ()
|
|
"""
|
|
Set the class to use for the helper_create_job function
|
|
|
|
:param TrainsJob job_class: Job Class type
|
|
"""
|
|
self._job_class = job_class
|
|
|
|
def set_job_default_parent(self, job_parent_task_id):
|
|
# type: (str) -> ()
|
|
"""
|
|
Set the default parent for all Jobs created by the helper_create_job method
|
|
:param str job_parent_task_id: Parent task id
|
|
"""
|
|
self._job_parent_id = job_parent_task_id
|
|
|
|
def set_job_naming_scheme(self, naming_function):
|
|
# type: (Optional[Callable[[str, dict], str]]) -> ()
|
|
"""
|
|
Set the function used to name a newly created job
|
|
|
|
:param callable naming_function: naming_functor(base_task_name, argument_dict) -> str
|
|
"""
|
|
self._naming_function = naming_function
|
|
|
|
def _validate_base_task(self):
|
|
# type: () -> ()
|
|
"""
|
|
Check the base task exists and contains the requested objective metric and hyper parameters
|
|
"""
|
|
# check if the task exists
|
|
try:
|
|
task = Task.get_task(task_id=self._base_task_id)
|
|
self._base_task_name = task.name
|
|
except ValueError:
|
|
raise ValueError("Could not find base task id {}".format(self._base_task_id))
|
|
# check if the hyper-parameters exist:
|
|
task_parameters = task.get_parameters_as_dict()
|
|
missing_params = [h.name for h in self._hyper_parameters if h.name not in task_parameters]
|
|
if missing_params:
|
|
logger.warning('Could not find requested hyper-parameters {} on base task {}'.format(
|
|
missing_params, self._base_task_id))
|
|
# check if the objective metric exists (i.e. no typos etc)
|
|
if self._objective_metric.get_objective(self._base_task_id) is None:
|
|
logger.warning('Could not find requested metric {} report on base task {}'.format(
|
|
self._objective_metric.get_objective_metric(), self._base_task_id))
|
|
|
|
def _get_task_project(self, parent_task_id):
|
|
# type: (str) -> (Optional[str])
|
|
if not parent_task_id:
|
|
return
|
|
if parent_task_id not in self._job_project:
|
|
task = Task.get_task(task_id=parent_task_id)
|
|
self._job_project[parent_task_id] = task.project
|
|
|
|
return self._job_project.get(parent_task_id)
|
|
|
|
def _get_job_iterations(self, job):
|
|
# type: (Union[TrainsJob, Task]) -> int
|
|
iteration_value = self._objective_metric.get_current_raw_objective(job)
|
|
return iteration_value[0] if iteration_value else -1
|
|
|
|
@classmethod
|
|
def _get_child_tasks(
|
|
cls,
|
|
parent_task_id, # type: str
|
|
status=None, # type: Optional[Task.TaskStatusEnum]
|
|
order_by=None, # type: Optional[str]
|
|
additional_filters=None # type: Optional[dict]
|
|
):
|
|
# type: (...) -> (Sequence[Task])
|
|
"""
|
|
Helper function, return a list of tasks tagged automl with specific status ordered by sort_field
|
|
|
|
:param str parent_task_id: Base Task ID (parent)
|
|
:param status: Current status of requested tasks (in_progress, completed etc)
|
|
:param str order_by: Field name to sort results.
|
|
Examples:
|
|
"-last_metrics.title.series.min"
|
|
"last_metrics.title.series.max"
|
|
"last_metrics.title.series.last"
|
|
"execution.parameters.name"
|
|
"updated"
|
|
:param dict additional_filters: Additional task filters
|
|
:return list(Task): List of Task objects
|
|
"""
|
|
task_filter = {'parent': parent_task_id,
|
|
# 'tags': [cls._tag],
|
|
'system_tags': ['-archived']}
|
|
task_filter.update(additional_filters or {})
|
|
|
|
if status:
|
|
task_filter['status'] = status
|
|
|
|
if order_by and (order_by.startswith('last_metrics') or order_by.startswith('-last_metrics')):
|
|
parts = order_by.split('.')
|
|
if parts[-1] in ('min', 'max', 'last'):
|
|
title = hashlib.md5(str(parts[1]).encode('utf-8')).hexdigest()
|
|
series = hashlib.md5(str(parts[2]).encode('utf-8')).hexdigest()
|
|
minmax = 'min_value' if 'min' in parts[3] else ('max_value' if 'max' in parts[3] else 'value')
|
|
order_by = '{}last_metrics.'.join(
|
|
('-' if order_by and order_by[0] == '-' else '', title, series, minmax))
|
|
|
|
if order_by:
|
|
task_filter['order_by'] = [order_by]
|
|
|
|
return Task.get_tasks(task_filter=task_filter)
|
|
|
|
|
|
class GridSearch(SearchStrategy):
|
|
"""
|
|
Grid search strategy controller.
|
|
Full grid sampling of every hyper-parameter combination
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
base_task_id, # type: str
|
|
hyper_parameters, # type: Sequence[Parameter]
|
|
objective_metric, # type: Objective
|
|
execution_queue, # type: str
|
|
num_concurrent_workers, # type: int
|
|
pool_period_min=2., # type: float
|
|
time_limit_per_job=None, # type: Optional[float]
|
|
max_iteration_per_job=None, # type: Optional[int]
|
|
total_max_jobs=None, # type: Optional[int]
|
|
**_ # type: Any
|
|
):
|
|
# type: (...) -> ()
|
|
"""
|
|
Initialize a grid search optimizer
|
|
|
|
:param str base_task_id: Task ID (str)
|
|
:param list hyper_parameters: list of Parameter objects to optimize over
|
|
:param Objective objective_metric: Objective metric to maximize / minimize
|
|
:param str execution_queue: execution queue to use for launching Tasks (experiments).
|
|
:param int num_concurrent_workers: Limit number of concurrent running machines
|
|
:param float pool_period_min: time in minutes between two consecutive pools
|
|
:param float time_limit_per_job: Optional, maximum execution time per single job in minutes,
|
|
when time limit is exceeded job is aborted
|
|
:param int max_iteration_per_job: maximum iterations (of the objective metric)
|
|
per single job, when exceeded job is aborted.
|
|
:param int total_max_jobs: total maximum jobs for the optimization process. Default None, unlimited
|
|
"""
|
|
super(GridSearch, self).__init__(
|
|
base_task_id=base_task_id, hyper_parameters=hyper_parameters, objective_metric=objective_metric,
|
|
execution_queue=execution_queue, num_concurrent_workers=num_concurrent_workers,
|
|
pool_period_min=pool_period_min, time_limit_per_job=time_limit_per_job,
|
|
max_iteration_per_job=max_iteration_per_job, total_max_jobs=total_max_jobs, **_)
|
|
self._param_iterator = None
|
|
|
|
def create_job(self):
|
|
# type: () -> Optional[TrainsJob]
|
|
"""
|
|
Create a new job if needed. return the newly created job.
|
|
If no job needs to be created, return None
|
|
|
|
:return TrainsJob: newly created TrainsJob object or None if no TrainsJob created
|
|
"""
|
|
try:
|
|
parameters = self._next_configuration()
|
|
except StopIteration:
|
|
return None
|
|
|
|
return self.helper_create_job(base_task_id=self._base_task_id, parameter_override=parameters)
|
|
|
|
def _next_configuration(self):
|
|
# type: () -> Mapping[str, str]
|
|
def param_iterator_fn():
|
|
hyper_params_values = [p.to_list() for p in self._hyper_parameters]
|
|
for state in product(*hyper_params_values):
|
|
yield dict(kv for d in state for kv in d.items())
|
|
|
|
if not self._param_iterator:
|
|
self._param_iterator = param_iterator_fn()
|
|
return next(self._param_iterator)
|
|
|
|
|
|
class RandomSearch(SearchStrategy):
|
|
"""
|
|
Random search strategy controller.
|
|
Random uniform sampling of hyper-parameters
|
|
"""
|
|
|
|
# Number of already chosen random samples before assuming we covered the entire hyper-parameter space
|
|
_hp_space_cover_samples = 42
|
|
|
|
def __init__(
|
|
self,
|
|
base_task_id, # type: str
|
|
hyper_parameters, # type: Sequence[Parameter]
|
|
objective_metric, # type: Objective
|
|
execution_queue, # type: str
|
|
num_concurrent_workers, # type: int
|
|
pool_period_min=2., # type: float
|
|
time_limit_per_job=None, # type: Optional[float]
|
|
max_iteration_per_job=None, # type: Optional[int]
|
|
total_max_jobs=None, # type: Optional[int]
|
|
**_ # type: Any
|
|
):
|
|
# type: (...) -> ()
|
|
"""
|
|
Initialize a random search optimizer
|
|
|
|
:param str base_task_id: Task ID (str)
|
|
:param list hyper_parameters: list of Parameter objects to optimize over
|
|
:param Objective objective_metric: Objective metric to maximize / minimize
|
|
:param str execution_queue: execution queue to use for launching Tasks (experiments).
|
|
:param int num_concurrent_workers: Limit number of concurrent running machines
|
|
:param float pool_period_min: time in minutes between two consecutive pools
|
|
:param float time_limit_per_job: Optional, maximum execution time per single job in minutes,
|
|
when time limit is exceeded job is aborted
|
|
:param int max_iteration_per_job: maximum iterations (of the objective metric)
|
|
per single job, when exceeded job is aborted.
|
|
:param int total_max_jobs: total maximum jobs for the optimization process. Default None, unlimited
|
|
"""
|
|
super(RandomSearch, self).__init__(
|
|
base_task_id=base_task_id, hyper_parameters=hyper_parameters, objective_metric=objective_metric,
|
|
execution_queue=execution_queue, num_concurrent_workers=num_concurrent_workers,
|
|
pool_period_min=pool_period_min, time_limit_per_job=time_limit_per_job,
|
|
max_iteration_per_job=max_iteration_per_job, total_max_jobs=total_max_jobs, **_)
|
|
self._hyper_parameters_collection = set()
|
|
|
|
def create_job(self):
|
|
# type: () -> Optional[TrainsJob]
|
|
"""
|
|
Create a new job if needed. return the newly created job.
|
|
If no job needs to be created, return None
|
|
|
|
:return TrainsJob: newly created TrainsJob object or None if no TrainsJob created
|
|
"""
|
|
parameters = None
|
|
|
|
# maximum tries to ge a random set that is not already in the collection
|
|
for i in range(self._hp_space_cover_samples):
|
|
parameters = {}
|
|
for p in self._hyper_parameters:
|
|
parameters.update(p.get_value())
|
|
# hash the parameters dictionary
|
|
param_hash = hash(json.dumps(parameters, sort_keys=True))
|
|
# if this is a new set of parameters, use it.
|
|
if param_hash not in self._hyper_parameters_collection:
|
|
self._hyper_parameters_collection.add(param_hash)
|
|
break
|
|
# try again
|
|
parameters = None
|
|
|
|
# if we failed to find a random set of parameters, assume we selected all of them
|
|
if not parameters:
|
|
return None
|
|
|
|
return self.helper_create_job(base_task_id=self._base_task_id, parameter_override=parameters)
|
|
|
|
|
|
class HyperParameterOptimizer(object):
|
|
"""
|
|
Hyper-parameter search controller. Cloning base experiment,
|
|
changing arguments and trying to maximize/minimize the defined objective
|
|
"""
|
|
_tag = 'optimization'
|
|
|
|
def __init__(
|
|
self,
|
|
base_task_id, # type: str
|
|
hyper_parameters, # type: Sequence[Parameter]
|
|
objective_metric_title, # type: str
|
|
objective_metric_series, # type: str
|
|
objective_metric_sign='min', # type: str
|
|
optimizer_class=RandomSearch, # type: type(SearchStrategy)
|
|
max_number_of_concurrent_tasks=10, # type: int
|
|
execution_queue='default', # type: str
|
|
optimization_time_limit=None, # type: Optional[float]
|
|
auto_connect_task=True, # type: bool
|
|
always_create_task=False, # type: bool
|
|
**optimizer_kwargs # type: Any
|
|
):
|
|
# type: (...) -> ()
|
|
"""
|
|
Create a new hyper-parameter controller. The newly created object will launch and monitor the new experiments.
|
|
|
|
:param str base_task_id: Task ID to be used as template experiment to optimize.
|
|
:param list hyper_parameters: list of Parameter objects to optimize over
|
|
:param str objective_metric_title: Objective metric title to maximize / minimize (example: 'validation')
|
|
:param str objective_metric_series: Objective metric series to maximize / minimize (example: 'loss')
|
|
:param str objective_metric_sign: Objective to maximize / minimize.
|
|
Valid options: ['min', 'max', 'min_global', 'max_global']
|
|
'min'/'max': Minimize/Maximize the last reported value for the specified title/series scalar
|
|
'min_global'/'max_global': Minimize/Maximize the min/max value
|
|
of *all* reported values for the specific title/series scalar
|
|
:param class.SearchStrategy optimizer_class: SearchStrategy optimizer to use for the hyper-parameter search
|
|
:param int max_number_of_concurrent_tasks: Maximum number of
|
|
concurrent Tasks (experiment) running at the same time.
|
|
:param str execution_queue: execution queue to use for launching Tasks (experiments).
|
|
:param float optimization_time_limit: Maximum time (minutes) for the entire optimization process.
|
|
Default is None, no time limit,
|
|
:param bool auto_connect_task: If True optimization argument and configuration will be stored on the Task
|
|
All arguments will be under the hyper-parameter section as 'opt/<arg>'
|
|
and the hyper_parameters will stored in the task connect_configuration (see artifacts/hyper-parameter)
|
|
:param bool always_create_task: If True there ts no current Task initialized,
|
|
we create a new task names 'optimization' in the base_task_id project.
|
|
otherwise we use the Task.current_task (if exists) to report statistics
|
|
:param ** optimizer_kwargs: arguments passed directly to the optimizer constructor
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
:linenos:
|
|
:caption: Example
|
|
|
|
from trains import Task
|
|
from trains.automation import UniformParameterRange, DiscreteParameterRange
|
|
from trains.automation import GridSearch, RandomSearch, HyperParameterOptimizer
|
|
|
|
task = Task.init('examples', 'HyperParameterOptimizer example')
|
|
an_optimizer = HyperParameterOptimizer(
|
|
base_task_id='fa30fa45d95d4927b87c323b5b04dc44',
|
|
hyper_parameters=[
|
|
UniformParameterRange('lr', min_value=0.01, max_value=0.3, step_size=0.05),
|
|
DiscreteParameterRange('network', values=['ResNet18', 'ResNet50', 'ResNet101']),
|
|
],
|
|
objective_metric_title='title',
|
|
objective_metric_series='series',
|
|
objective_metric_sign='min',
|
|
max_number_of_concurrent_tasks=5,
|
|
optimizer_class=RandomSearch,
|
|
execution_queue='workers', time_limit_per_job=120, pool_period_min=0.2)
|
|
|
|
# This will automatically create and print the optimizer new task id
|
|
# for later use. if a Task was already created, it will use it.
|
|
an_optimizer.set_time_limit(in_minutes=10.)
|
|
an_optimizer.start()
|
|
# we can create a pooling loop if we like
|
|
while not an_optimizer.reached_time_limit():
|
|
top_exp = an_optimizer.get_top_experiments(top_k=3)
|
|
print(top_exp)
|
|
# wait until optimization completed or timed-out
|
|
an_optimizer.wait()
|
|
# make sure we stop all jobs
|
|
an_optimizer.stop()
|
|
|
|
|
|
"""
|
|
|
|
# create a new Task, if we do not have one already
|
|
self._task = Task.current_task()
|
|
if not self._task and always_create_task:
|
|
base_task = Task.get_task(task_id=self.base_task_id)
|
|
self._task = Task.init(
|
|
project_name=base_task.get_project_name(),
|
|
task_name='Optimizing: {}'.format(base_task.name),
|
|
) # TODO: add task_type=controller
|
|
|
|
opts = dict(
|
|
base_task_id=base_task_id,
|
|
objective_metric_title=objective_metric_title,
|
|
objective_metric_series=objective_metric_series,
|
|
objective_metric_sign=objective_metric_sign,
|
|
max_number_of_concurrent_tasks=max_number_of_concurrent_tasks,
|
|
execution_queue=execution_queue,
|
|
optimization_time_limit=optimization_time_limit,
|
|
optimizer_kwargs=optimizer_kwargs)
|
|
# make sure all the created tasks are our children, as we are creating them
|
|
if self._task:
|
|
self._task.add_tags([self._tag])
|
|
if auto_connect_task:
|
|
optimizer_class, hyper_parameters, opts = self._connect_args(
|
|
optimizer_class=optimizer_class, hyper_param_configuration=hyper_parameters, **opts)
|
|
|
|
self.base_task_id = opts['base_task_id']
|
|
self.hyper_parameters = hyper_parameters
|
|
self.max_number_of_concurrent_tasks = opts['max_number_of_concurrent_tasks']
|
|
self.execution_queue = opts['execution_queue']
|
|
self.objective_metric = Objective(
|
|
title=opts['objective_metric_title'], series=opts['objective_metric_series'],
|
|
order='min' if opts['objective_metric_sign'] in ('min', 'min_global') else 'max',
|
|
extremum=opts['objective_metric_sign'].endswith('_global'))
|
|
# if optimizer_class is an instance, use it as is.
|
|
if type(optimizer_class) != type:
|
|
self.optimizer = optimizer_class
|
|
else:
|
|
self.optimizer = optimizer_class(
|
|
base_task_id=opts['base_task_id'], hyper_parameters=hyper_parameters,
|
|
objective_metric=self.objective_metric, execution_queue=opts['execution_queue'],
|
|
num_concurrent_workers=opts['max_number_of_concurrent_tasks'], **opts.get('optimizer_kwargs', {}))
|
|
self.optimization_timeout = None
|
|
self.optimization_start_time = None
|
|
self._thread = None
|
|
self._stop_event = None
|
|
self._report_period_min = 5.
|
|
self._thread_reporter = None
|
|
self._experiment_completed_cb = None
|
|
if self._task:
|
|
self.optimizer.set_job_default_parent(self._task.id)
|
|
self.set_time_limit(in_minutes=opts['optimization_time_limit'])
|
|
|
|
def get_num_active_experiments(self):
|
|
# type: () -> int
|
|
"""
|
|
Return the number of current active experiments
|
|
|
|
:return int: number of active experiments
|
|
"""
|
|
if not self.optimizer:
|
|
return 0
|
|
return len(self.optimizer.get_running_jobs())
|
|
|
|
def get_active_experiments(self):
|
|
# type: () -> Sequence[Task]
|
|
"""
|
|
Return a list of Tasks of the current active experiments
|
|
|
|
:return list: List of Task objects, representing the current active experiments
|
|
"""
|
|
if not self.optimizer:
|
|
return []
|
|
return [j.task for j in self.optimizer.get_running_jobs()]
|
|
|
|
def start(self, job_complete_callback=None):
|
|
# type: (Optional[Callable[[str, float, int, dict, str], None]]) -> bool
|
|
"""
|
|
Start the HyperParameterOptimizer controller.
|
|
If the calling process is stopped, the controller will stop as well.
|
|
|
|
:param Callable job_complete_callback: callback function, called when a job is completed.
|
|
def job_complete_callback(
|
|
job_id, # type: str
|
|
objective_value, # type: float
|
|
objective_iteration, # type: int
|
|
job_parameters, # type: dict
|
|
top_performance_job_id # type: str
|
|
):
|
|
pass
|
|
:return bool: If True the controller started
|
|
"""
|
|
if not self.optimizer:
|
|
return False
|
|
|
|
if self._thread:
|
|
return True
|
|
|
|
self.optimization_start_time = time()
|
|
self._experiment_completed_cb = job_complete_callback
|
|
self._stop_event = Event()
|
|
self._thread = Thread(target=self._daemon)
|
|
self._thread.daemon = True
|
|
self._thread.start()
|
|
self._thread_reporter = Thread(target=self._report_daemon)
|
|
self._thread_reporter.daemon = True
|
|
self._thread_reporter.start()
|
|
return True
|
|
|
|
def stop(self, timeout=None):
|
|
# type: (Optional[float]) -> ()
|
|
"""
|
|
Stop the HyperParameterOptimizer controller and optimization thread,
|
|
|
|
:param float timeout: Wait timeout in minutes for the optimization thread to exit.
|
|
Default None, do not wait terminate immediately.
|
|
"""
|
|
if not self._thread or not self._stop_event or not self.optimizer:
|
|
return
|
|
|
|
_thread = self._thread
|
|
self._stop_event.set()
|
|
self.optimizer.stop()
|
|
|
|
# wait for optimizer thread
|
|
if timeout is not None:
|
|
_thread.join(timeout=timeout * 60.)
|
|
|
|
# stop all running tasks:
|
|
for j in self.optimizer.get_running_jobs():
|
|
j.abort()
|
|
|
|
# clear thread
|
|
self._thread = None
|
|
# wait for reporter to flush
|
|
self._thread_reporter.join()
|
|
|
|
def is_active(self):
|
|
# type: () -> bool
|
|
"""
|
|
Return True if the optimization procedure is still running
|
|
Note, if the daemon thread has not yet started, it will still return True
|
|
|
|
:return bool: If False the optimization procedure stopped
|
|
"""
|
|
return self._stop_event is None or self._thread is not None
|
|
|
|
def is_running(self):
|
|
# type: () -> bool
|
|
"""
|
|
Return True if the optimization controller is running
|
|
|
|
:return bool: If True if optimization procedure is active
|
|
"""
|
|
return self._thread is not None
|
|
|
|
def wait(self, timeout=None):
|
|
# type: (Optional[float]) -> bool
|
|
"""
|
|
Wait for the optimizer to finish.
|
|
It will not stop the optimizer in any case. Call stop() to terminate the optimizer.
|
|
|
|
:param float timeout: Timeout in minutes to wait for the optimization to complete
|
|
If None, wait until we reached the timeout, or optimization completed.
|
|
:return bool: True if optimization finished, False if timeout.
|
|
"""
|
|
if not self.is_running():
|
|
return True
|
|
|
|
if timeout is not None:
|
|
timeout *= 60.
|
|
else:
|
|
timeout = max(0, self.optimization_timeout - self.optimization_start_time) \
|
|
if self.optimization_timeout else None
|
|
|
|
_thread = self._thread
|
|
|
|
_thread.join(timeout=timeout)
|
|
if _thread.is_alive():
|
|
return False
|
|
|
|
return True
|
|
|
|
def set_time_limit(self, in_minutes=None, specific_time=None):
|
|
# type: (Optional[float], Optional[datetime]) -> ()
|
|
"""
|
|
Set a time limit for the HyperParameterOptimizer controller,
|
|
i.e. if we reached the time limit, stop the optimization process
|
|
|
|
:param float in_minutes: Set maximum processing time in minutes from current time
|
|
:param datetime specific_time: Set specific date/time limit
|
|
"""
|
|
if specific_time:
|
|
self.optimization_timeout = specific_time.timestamp()
|
|
else:
|
|
self.optimization_timeout = (in_minutes * 60.) + time() if in_minutes else None
|
|
|
|
def get_time_limit(self):
|
|
# type: () -> datetime
|
|
"""
|
|
Return the controller optimization time limit.
|
|
|
|
:return datetime: Absolute datetime limit of the controller optimization process
|
|
"""
|
|
return datetime.fromtimestamp(self.optimization_timeout)
|
|
|
|
def elapsed(self):
|
|
# type: () -> float
|
|
"""
|
|
Return minutes elapsed from controller stating time stamp
|
|
|
|
:return float: minutes from controller start time, negative value means the process has not started yet.
|
|
"""
|
|
if self.optimization_start_time is None:
|
|
return -1.0
|
|
return (time() - self.optimization_start_time) / 60.
|
|
|
|
def reached_time_limit(self):
|
|
# type: () -> bool
|
|
"""
|
|
Return True if we passed the time limit. Function returns immediately, it does not wait for the optimizer.
|
|
|
|
:return bool: Return True, if optimizer is running and we passed the time limit, otherwise returns False.
|
|
"""
|
|
if self.optimization_start_time is None:
|
|
return False
|
|
if not self.is_running():
|
|
return False
|
|
|
|
return time() > self.optimization_timeout
|
|
|
|
def get_top_experiments(self, top_k):
|
|
# type: (int) -> Sequence[Task]
|
|
"""
|
|
Return a list of Tasks of the top performing experiments, based on the controller Objective object
|
|
|
|
:param int top_k: Number of Tasks (experiments) to return
|
|
:return list: List of Task objects, ordered by performance, where index 0 is the best performing Task.
|
|
"""
|
|
if not self.optimizer:
|
|
return []
|
|
return self.optimizer.get_top_experiments(top_k=top_k)
|
|
|
|
def get_optimizer(self):
|
|
# type: () -> SearchStrategy
|
|
"""
|
|
Return the currently used optimizer object
|
|
|
|
:return SearchStrategy: Used SearchStrategy object
|
|
"""
|
|
return self.optimizer
|
|
|
|
def set_default_job_class(self, job_class):
|
|
# type: (TrainsJob) -> ()
|
|
"""
|
|
Set the Job class to use when the optimizer spawns new Jobs
|
|
|
|
:param TrainsJob job_class: Job Class type
|
|
"""
|
|
self.optimizer.set_job_class(job_class)
|
|
|
|
def set_report_period(self, report_period_minutes):
|
|
# type: (float) -> ()
|
|
"""
|
|
Set reporting period in minutes, for the accumulated objective report
|
|
This report is sent on the Optimizer Task, and collects objective metric from all running jobs.
|
|
|
|
:param float report_period_minutes: Reporting period in minutes. Default once every 10 minutes.
|
|
"""
|
|
self._report_period_min = float(report_period_minutes)
|
|
|
|
def _connect_args(self, optimizer_class=None, hyper_param_configuration=None, **kwargs):
|
|
# type: (SearchStrategy, dict, Any) -> (SearchStrategy, list, dict)
|
|
if not self._task:
|
|
logger.warning('Auto Connect turned on but no Task was found, '
|
|
'hyper-parameter optimization argument logging disabled')
|
|
return optimizer_class, hyper_param_configuration, kwargs
|
|
|
|
configuration_dict = {'parameter_optimization_space': [c.to_dict() for c in hyper_param_configuration]}
|
|
self._task.connect_configuration(configuration_dict)
|
|
# this is the conversion back magic:
|
|
configuration_dict = {'parameter_optimization_space': [
|
|
Parameter.from_dict(c) for c in configuration_dict['parameter_optimization_space']]}
|
|
|
|
arguments = {'opt': kwargs}
|
|
if type(optimizer_class) != type:
|
|
logger.warning('Auto Connect optimizer_class disabled, {} is already instantiated'.format(optimizer_class))
|
|
self._task.connect(arguments)
|
|
else:
|
|
arguments['opt']['optimizer_class'] = str(optimizer_class).split('.')[-1][:-2] \
|
|
if not isinstance(optimizer_class, str) else optimizer_class
|
|
self._task.connect(arguments)
|
|
# this is the conversion back magic:
|
|
original_class = optimizer_class
|
|
optimizer_class = arguments['opt'].pop('optimizer_class', None)
|
|
if optimizer_class == 'RandomSearch':
|
|
optimizer_class = RandomSearch
|
|
elif optimizer_class == 'GridSearch':
|
|
optimizer_class = GridSearch
|
|
elif optimizer_class == 'OptimizerBOHB':
|
|
from .hpbandster import OptimizerBOHB
|
|
optimizer_class = OptimizerBOHB
|
|
else:
|
|
logger.warning("Could not resolve optimizer_class {} reverting to original class {}".format(
|
|
optimizer_class, original_class))
|
|
optimizer_class = original_class
|
|
|
|
return optimizer_class, configuration_dict['parameter_optimization_space'], arguments['opt']
|
|
|
|
def _daemon(self):
|
|
# type: () -> ()
|
|
"""
|
|
implement the main pooling thread, calling loop every self.pool_period_minutes minutes
|
|
"""
|
|
self.optimizer.start()
|
|
self._thread = None
|
|
|
|
def _report_daemon(self):
|
|
# type: () -> ()
|
|
worker_to_series = {}
|
|
title, series = self.objective_metric.get_objective_metric()
|
|
title = '{}/{}'.format(title, series)
|
|
series = 'machine:'
|
|
counter = 0
|
|
completed_jobs = dict()
|
|
best_experiment = float('-inf'), None
|
|
|
|
while self._thread is not None:
|
|
timeout = self.optimization_timeout - time() if self.optimization_timeout else 0.
|
|
|
|
if timeout >= 0:
|
|
timeout = min(self._report_period_min * 60., timeout if timeout else self._report_period_min * 60.)
|
|
# make sure that we have the first report fired before we actually go to sleep, wait for 15 sec.
|
|
if counter <= 0:
|
|
timeout = 15
|
|
print('Progress report #{} completed, sleeping for {} minutes'.format(counter, timeout / 60.))
|
|
if self._stop_event.wait(timeout=timeout):
|
|
# wait for one last report
|
|
timeout = -1
|
|
|
|
counter += 1
|
|
|
|
# get task to report on.
|
|
if self._task or Task.current_task():
|
|
task_logger = (self._task or Task.current_task()).get_logger()
|
|
|
|
# do some reporting
|
|
|
|
# running objective, per machine
|
|
running_job_ids = set()
|
|
for j in self.optimizer.get_running_jobs():
|
|
worker = j.worker()
|
|
running_job_ids.add(j.task_id())
|
|
if worker not in worker_to_series:
|
|
worker_to_series[worker] = len(worker_to_series) + 1
|
|
machine_id = worker_to_series[worker]
|
|
value = self.objective_metric.get_objective(j)
|
|
if value is not None:
|
|
task_logger.report_scalar(
|
|
title=title, series='{}{}'.format(series, machine_id),
|
|
iteration=counter, value=value)
|
|
|
|
# noinspection PyBroadException
|
|
try:
|
|
budget = self.optimizer.budget.to_dict()
|
|
except Exception:
|
|
budget = {}
|
|
|
|
# report remaining budget
|
|
for budget_part, value in budget.items():
|
|
task_logger.report_scalar(
|
|
title='remaining budget', series='{} %'.format(budget_part),
|
|
iteration=counter, value=round(100 - value['used'] * 100., ndigits=1))
|
|
if self.optimization_timeout and self.optimization_start_time:
|
|
task_logger.report_scalar(
|
|
title='remaining budget', series='time %',
|
|
iteration=counter,
|
|
value=round(100 - (100. * (time() - self.optimization_start_time) /
|
|
(self.optimization_timeout - self.optimization_start_time)), ndigits=1)
|
|
)
|
|
|
|
# collect a summary of all the jobs and their final objective values
|
|
cur_completed_jobs = set(self.optimizer.get_created_jobs_ids().keys()) - running_job_ids
|
|
if cur_completed_jobs != set(completed_jobs.keys()):
|
|
pairs = []
|
|
labels = []
|
|
created_jobs = copy(self.optimizer.get_created_jobs_ids())
|
|
for i, (job_id, params) in enumerate(created_jobs.items()):
|
|
if job_id in completed_jobs:
|
|
pairs.append((i, completed_jobs[job_id][0]))
|
|
labels.append(str(completed_jobs[job_id][2])[1:-1])
|
|
else:
|
|
value = self.objective_metric.get_objective(job_id)
|
|
if value is not None:
|
|
pairs.append((i, value))
|
|
labels.append(str(params)[1:-1])
|
|
iteration_value = self.objective_metric.get_current_raw_objective(job_id)
|
|
completed_jobs[job_id] = (
|
|
value, iteration_value[0] if iteration_value else -1, copy(params))
|
|
# callback new experiment completed
|
|
if self._experiment_completed_cb:
|
|
normalized_value = self.objective_metric.get_normalized_objective(job_id)
|
|
if normalized_value is not None and normalized_value > best_experiment[0]:
|
|
best_experiment = normalized_value, job_id
|
|
c = completed_jobs[job_id]
|
|
self._experiment_completed_cb(job_id, c[0], c[1], c[2], best_experiment[1])
|
|
|
|
if pairs:
|
|
print('Updating job performance summary plot/table')
|
|
|
|
# update scatter plot
|
|
task_logger.report_scatter2d(
|
|
title='optimization', series=title,
|
|
scatter=pairs, iteration=0, labels=labels,
|
|
mode='markers', xaxis='job #', yaxis='objective')
|
|
|
|
# update summary table
|
|
if pd:
|
|
index = list(completed_jobs.keys())
|
|
table = {'objective': [completed_jobs[i][0] for i in index],
|
|
'iteration': [completed_jobs[i][1] for i in index]}
|
|
columns = set([c for k, v in completed_jobs.items() for c in v[2].keys()])
|
|
for c in sorted(columns):
|
|
table.update({c: [completed_jobs[i][2].get(c, '') for i in index]})
|
|
|
|
df = pd.DataFrame(table, index=index)
|
|
df.sort_values(by='objective', ascending=bool(self.objective_metric.sign < 0), inplace=True)
|
|
df.index.name = 'task id'
|
|
task_logger.report_table("summary", "job", 0, table_plot=df)
|
|
|
|
# if we should leave, stop everything now.
|
|
if timeout < 0:
|
|
# we should leave
|
|
self.stop()
|
|
return
|