clearml/examples/frameworks/scikit-learn/sklearn_joblib_example.py
2020-12-24 00:30:32 +02:00

48 lines
1.3 KiB
Python

try:
import joblib
except ImportError:
from sklearn.externals import joblib
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="scikit-learn joblib example")
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LogisticRegression(solver='liblinear', multi_class='auto') # sklearn LogisticRegression class
model.fit(X_train, y_train)
joblib.dump(model, 'model.pkl', compress=True)
loaded_model = joblib.load('model.pkl')
result = loaded_model.score(X_test, y_test)
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = .02 # step size in the mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
plt.figure(1, figsize=(4, 3))
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()