clearml/examples/tensorflow_mnist.py
2019-11-08 22:14:42 +02:00

173 lines
6.2 KiB
Python

# TRAINS - Example of tensorflow mnist training model logging
#
# Save and Restore a model using TensorFlow.
# This example is using the MNIST database of handwritten digits
# (http://yann.lecun.com/exdb/mnist/)
#
# Author: Aymeric Damien
# Project: https://github.com/aymericdamien/TensorFlow-Examples/
from __future__ import print_function
from os.path import exists, join
import tempfile
import numpy as np
import tensorflow as tf
from trains import Task
MODEL_PATH = join(tempfile.gettempdir(), "module_no_signatures")
task = Task.init(project_name='examples', task_name='Tensorflow mnist example')
## block
X_train = np.random.rand(100, 3)
y_train = np.random.rand(100, 1)
model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
model.compile(loss='categorical_crossentropy',
optimizer=tf.keras.optimizers.SGD(),
metrics=['accuracy'])
model.fit(X_train, y_train, steps_per_epoch=1, nb_epoch=1)
with tf.Session(graph=tf.Graph()) as sess:
if exists(MODEL_PATH):
try:
tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], MODEL_PATH)
m2 = tf.saved_model.load(sess, [tf.saved_model.tag_constants.SERVING], MODEL_PATH)
except Exception:
pass
tf.train.Checkpoint
## block end
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# Parameters
parameters = {
'learning_rate': 0.001,
'batch_size': 100,
'display_step': 1,
'model_path': join(tempfile.gettempdir(), "model.ckpt"),
# Network Parameters
'n_hidden_1': 256, # 1st layer number of features
'n_hidden_2': 256, # 2nd layer number of features
'n_input': 784, # MNIST data input (img shape: 28*28)
'n_classes': 10, # MNIST total classes (0-9 digits)
}
# TRAINS: connect parameters with the experiment/task for logging
parameters = task.connect(parameters)
# tf Graph input
x = tf.placeholder("float", [None, parameters['n_input']])
y = tf.placeholder("float", [None, parameters['n_classes']])
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([parameters['n_input'], parameters['n_hidden_1']])),
'h2': tf.Variable(tf.random_normal([parameters['n_hidden_1'], parameters['n_hidden_2']])),
'out': tf.Variable(tf.random_normal([parameters['n_hidden_2'], parameters['n_classes']]))
}
biases = {
'b1': tf.Variable(tf.random_normal([parameters['n_hidden_1']])),
'b2': tf.Variable(tf.random_normal([parameters['n_hidden_2']])),
'out': tf.Variable(tf.random_normal([parameters['n_classes']]))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=parameters['learning_rate']).minimize(cost)
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# 'Saver' op to save and restore all the variables
saver = tf.train.Saver()
# Running first session
print("Starting 1st session...")
with tf.Session() as sess:
# Run the initializer
sess.run(init)
# Training cycle
for epoch in range(3):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/parameters['batch_size'])
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(parameters['batch_size'])
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if epoch % parameters['display_step'] == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost))
save_path = saver.save(sess, parameters['model_path'])
print("First Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
# Save model weights to disk
save_path = saver.save(sess, parameters['model_path'])
print("Model saved in file: %s" % save_path)
# Running a new session
print("Starting 2nd session...")
with tf.Session() as sess:
# Initialize variables
sess.run(init)
# Restore model weights from previously saved model
saver.restore(sess, parameters['model_path'])
print("Model restored from file: %s" % save_path)
# Resume training
for epoch in range(7):
avg_cost = 0.
total_batch = int(mnist.train.num_examples / parameters['batch_size'])
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(parameters['batch_size'])
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if epoch % parameters['display_step'] == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
print("Second Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print("Accuracy:", accuracy.eval(
{x: mnist.test.images, y: mnist.test.labels}))