mirror of
https://github.com/clearml/clearml
synced 2025-01-31 09:07:00 +00:00
218 lines
9.3 KiB
Python
218 lines
9.3 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the 'License');
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an 'AS IS' BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""A simple MNIST classifier which displays summaries in TensorBoard.
|
|
|
|
This is an unimpressive MNIST model, but it is a good example of using
|
|
tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of
|
|
naming summary tags so that they are grouped meaningfully in TensorBoard.
|
|
|
|
It demonstrates the functionality of every TensorBoard dashboard.
|
|
"""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import argparse
|
|
import os
|
|
import sys
|
|
|
|
import tensorflow as tf
|
|
|
|
from tensorflow.examples.tutorials.mnist import input_data
|
|
from trains import Task
|
|
|
|
FLAGS = None
|
|
task = Task.init(project_name='examples', task_name='Tensorflow mnist with summaries example')
|
|
|
|
|
|
def train():
|
|
# Import data
|
|
mnist = input_data.read_data_sets(FLAGS.data_dir, fake_data=FLAGS.fake_data)
|
|
|
|
sess = tf.InteractiveSession()
|
|
# Create a multilayer model.
|
|
|
|
# Input placeholders
|
|
with tf.name_scope('input'):
|
|
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
|
|
y_ = tf.placeholder(tf.int64, [None], name='y-input')
|
|
|
|
with tf.name_scope('input_reshape'):
|
|
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
|
|
tf.summary.image('input', image_shaped_input, 10)
|
|
|
|
# We can't initialize these variables to 0 - the network will get stuck.
|
|
def weight_variable(shape):
|
|
"""Create a weight variable with appropriate initialization."""
|
|
initial = tf.truncated_normal(shape, stddev=0.1)
|
|
return tf.Variable(initial)
|
|
|
|
def bias_variable(shape):
|
|
"""Create a bias variable with appropriate initialization."""
|
|
initial = tf.constant(0.1, shape=shape)
|
|
return tf.Variable(initial)
|
|
|
|
def variable_summaries(var):
|
|
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
|
|
with tf.name_scope('summaries'):
|
|
mean = tf.reduce_mean(var)
|
|
tf.summary.scalar('mean', mean)
|
|
with tf.name_scope('stddev'):
|
|
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
|
|
tf.summary.scalar('stddev', stddev)
|
|
tf.summary.scalar('max', tf.reduce_max(var))
|
|
tf.summary.scalar('min', tf.reduce_min(var))
|
|
tf.summary.histogram('histogram', var)
|
|
|
|
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
|
|
"""Reusable code for making a simple neural net layer.
|
|
|
|
It does a matrix multiply, bias add, and then uses ReLU to nonlinearize.
|
|
It also sets up name scoping so that the resultant graph is easy to read,
|
|
and adds a number of summary ops.
|
|
"""
|
|
# Adding a name scope ensures logical grouping of the layers in the graph.
|
|
with tf.name_scope(layer_name):
|
|
# This Variable will hold the state of the weights for the layer
|
|
with tf.name_scope('weights'):
|
|
weights = weight_variable([input_dim, output_dim])
|
|
variable_summaries(weights)
|
|
with tf.name_scope('biases'):
|
|
biases = bias_variable([output_dim])
|
|
variable_summaries(biases)
|
|
with tf.name_scope('Wx_plus_b'):
|
|
preactivate = tf.matmul(input_tensor, weights) + biases
|
|
tf.summary.histogram('pre_activations', preactivate)
|
|
activations = act(preactivate, name='activation')
|
|
tf.summary.histogram('activations', activations)
|
|
return activations
|
|
|
|
hidden1 = nn_layer(x, 784, 500, 'layer1')
|
|
|
|
with tf.name_scope('dropout'):
|
|
keep_prob = tf.placeholder(tf.float32)
|
|
tf.summary.scalar('dropout_keep_probability', keep_prob)
|
|
dropped = tf.nn.dropout(hidden1, keep_prob)
|
|
|
|
# Do not apply softmax activation yet, see below.
|
|
y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
|
|
|
|
with tf.name_scope('cross_entropy'):
|
|
# The raw formulation of cross-entropy,
|
|
#
|
|
# tf.reduce_mean(-tf.reduce_sum(y_ * tf.math.log(tf.softmax(y)),
|
|
# reduction_indices=[1]))
|
|
#
|
|
# can be numerically unstable.
|
|
#
|
|
# So here we use tf.compat.v1.losses.sparse_softmax_cross_entropy on the
|
|
# raw logit outputs of the nn_layer above, and then average across
|
|
# the batch.
|
|
with tf.name_scope('total'):
|
|
cross_entropy = tf.losses.sparse_softmax_cross_entropy(
|
|
labels=y_, logits=y)
|
|
tf.summary.scalar('cross_entropy', cross_entropy)
|
|
|
|
with tf.name_scope('train'):
|
|
train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
|
|
cross_entropy)
|
|
|
|
with tf.name_scope('accuracy'):
|
|
with tf.name_scope('correct_prediction'):
|
|
correct_prediction = tf.equal(tf.argmax(y, 1), y_)
|
|
with tf.name_scope('accuracy'):
|
|
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
|
|
tf.summary.scalar('accuracy', accuracy)
|
|
|
|
# Merge all the summaries and write them out to
|
|
# /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
|
|
merged = tf.summary.merge_all()
|
|
train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
|
|
test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
|
|
|
|
tf.global_variables_initializer().run()
|
|
|
|
# Train the model, and also write summaries.
|
|
# Every 10th step, measure test-set accuracy, and write test summaries
|
|
# All other steps, run train_step on training data, & add training summaries
|
|
|
|
def feed_dict(train):
|
|
"""Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
|
|
if train or FLAGS.fake_data:
|
|
xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
|
|
k = FLAGS.dropout
|
|
else:
|
|
xs, ys = mnist.test.images, mnist.test.labels
|
|
k = 1.0
|
|
return {x: xs, y_: ys, keep_prob: k}
|
|
|
|
saver = tf.train.Saver()
|
|
for i in range(FLAGS.max_steps):
|
|
if i % 10 == 0: # Record summaries and test-set accuracy
|
|
summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
|
|
test_writer.add_summary(summary, i)
|
|
print('Accuracy at step %s: %s' % (i, acc))
|
|
else: # Record train set summaries, and train
|
|
if i % 100 == 99: # Record execution stats
|
|
run_metadata = tf.RunMetadata()
|
|
summary, _ = sess.run([merged, train_step],
|
|
feed_dict=feed_dict(True),
|
|
run_metadata=run_metadata)
|
|
train_writer.add_run_metadata(run_metadata, 'step%04d' % i)
|
|
train_writer.add_summary(summary, i)
|
|
print('Adding run metadata for', i)
|
|
else: # Record a summary
|
|
summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
|
|
# train_writer.add_summary(summary, i)
|
|
|
|
save_path = saver.save(sess, FLAGS.save_path)
|
|
print("Saved model: %s" % save_path)
|
|
print('Flushing all images, this may take a couple of minutes')
|
|
train_writer.close()
|
|
test_writer.close()
|
|
print('Finished storing all metrics & images')
|
|
|
|
|
|
def main(_):
|
|
if tf.gfile.Exists(FLAGS.log_dir):
|
|
tf.gfile.DeleteRecursively(FLAGS.log_dir)
|
|
tf.gfile.MakeDirs(FLAGS.log_dir)
|
|
with tf.Graph().as_default():
|
|
train()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--fake_data', nargs='?', const=True, type=bool,
|
|
default=False,
|
|
help='If true, uses fake data for unit testing.')
|
|
parser.add_argument('--max_steps', type=int, default=300,
|
|
help='Number of steps to run trainer.')
|
|
parser.add_argument('--learning_rate', type=float, default=0.001,
|
|
help='Initial learning rate')
|
|
parser.add_argument('--dropout', type=float, default=0.9,
|
|
help='Keep probability for training dropout.')
|
|
parser.add_argument('--data_dir', type=str,
|
|
default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), 'tensorflow/mnist/input_data'),
|
|
help='Directory for storing input data')
|
|
parser.add_argument('--log_dir', type=str,
|
|
default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
|
|
'tensorflow/mnist/logs/mnist_with_summaries'),
|
|
help='Summaries log directory')
|
|
parser.add_argument('--save_path', default="/tmp/model.ckpt",
|
|
help='Save the trained model under this path')
|
|
FLAGS, unparsed = parser.parse_known_args()
|
|
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
|