clearml/trains/binding/frameworks/lightgbm_bind.py
2020-10-12 12:34:52 +03:00

131 lines
4.8 KiB
Python

import sys
import six
from pathlib2 import Path
from ..frameworks.base_bind import PatchBaseModelIO
from ..frameworks import _patched_call, WeightsFileHandler, _Empty
from ..import_bind import PostImportHookPatching
from ...config import running_remotely
from ...model import Framework
class PatchLIGHTgbmModelIO(PatchBaseModelIO):
__main_task = None
__patched = None
@staticmethod
def update_current_task(task, **kwargs):
PatchLIGHTgbmModelIO.__main_task = task
PatchLIGHTgbmModelIO._patch_model_io()
PostImportHookPatching.add_on_import('lightgbm', PatchLIGHTgbmModelIO._patch_model_io)
@staticmethod
def _patch_model_io():
if PatchLIGHTgbmModelIO.__patched:
return
if 'lightgbm' not in sys.modules:
return
PatchLIGHTgbmModelIO.__patched = True
# noinspection PyBroadException
try:
import lightgbm as lgb # noqa
lgb.Booster.save_model = _patched_call(lgb.Booster.save_model, PatchLIGHTgbmModelIO._save)
lgb.train = _patched_call(lgb.train, PatchLIGHTgbmModelIO._train)
lgb.Booster = _patched_call(lgb.Booster, PatchLIGHTgbmModelIO._load)
except ImportError:
pass
except Exception:
pass
@staticmethod
def _save(original_fn, obj, f, *args, **kwargs):
ret = original_fn(obj, f, *args, **kwargs)
if not PatchLIGHTgbmModelIO.__main_task:
return ret
if isinstance(f, six.string_types):
filename = f
elif hasattr(f, 'name'):
filename = f.name
# noinspection PyBroadException
try:
f.flush()
except Exception:
pass
else:
filename = None
# give the model a descriptive name based on the file name
# noinspection PyBroadException
try:
model_name = Path(filename).stem
except Exception:
model_name = None
WeightsFileHandler.create_output_model(obj, filename, Framework.lightgbm, PatchLIGHTgbmModelIO.__main_task,
singlefile=True, model_name=model_name)
return ret
@staticmethod
def _load(original_fn, model_file, *args, **kwargs):
if isinstance(model_file, six.string_types):
filename = model_file
elif hasattr(model_file, 'name'):
filename = model_file.name
elif len(args) == 1 and isinstance(args[0], six.string_types):
filename = args[0]
else:
filename = None
if not PatchLIGHTgbmModelIO.__main_task:
return original_fn(model_file, *args, **kwargs)
# register input model
empty = _Empty()
# Hack: disabled
if False and running_remotely():
filename = WeightsFileHandler.restore_weights_file(empty, filename, Framework.xgboost,
PatchLIGHTgbmModelIO.__main_task)
model = original_fn(model_file=filename or model_file, *args, **kwargs)
else:
# try to load model before registering, in case we fail
model = original_fn(model_file=model_file, *args, **kwargs)
WeightsFileHandler.restore_weights_file(empty, filename, Framework.lightgbm,
PatchLIGHTgbmModelIO.__main_task)
if empty.trains_in_model:
# noinspection PyBroadException
try:
model.trains_in_model = empty.trains_in_model
except Exception:
pass
return model
@staticmethod
def _train(original_fn, *args, **kwargs):
def trains_lightgbm_callback():
def callback(env):
# logging the results to scalars section
# noinspection PyBroadException
try:
logger = PatchLIGHTgbmModelIO.__main_task.get_logger()
iteration = env.iteration
for data_title, data_series, value, _ in env.evaluation_result_list:
logger.report_scalar(title=data_title, series=data_series, value="{:.6f}".format(value),
iteration=iteration)
except Exception:
pass
return callback
params, train_set = args
kwargs.setdefault("callbacks", []).append(trains_lightgbm_callback())
ret = original_fn(params, train_set, **kwargs)
if not PatchLIGHTgbmModelIO.__main_task:
return ret
for k, v in params.items():
if isinstance(v, set):
params[k] = list(v)
PatchLIGHTgbmModelIO.__main_task.connect(params)
return ret